| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
|
| 2 |
|
ishlg.i |
|
| 3 |
|
ishlg.k |
|
| 4 |
|
ishlg.a |
|
| 5 |
|
ishlg.b |
|
| 6 |
|
ishlg.c |
|
| 7 |
|
hlln.1 |
|
| 8 |
|
hltr.d |
|
| 9 |
|
hlcgrex.m |
|
| 10 |
|
hlcgrex.1 |
|
| 11 |
|
hlcgrex.2 |
|
| 12 |
7
|
ad2antrr |
|
| 13 |
|
simplr |
|
| 14 |
4
|
ad2antrr |
|
| 15 |
5
|
ad2antrr |
|
| 16 |
6
|
ad2antrr |
|
| 17 |
1 9 2 12 13 14 15 16
|
axtgsegcon |
|
| 18 |
12
|
ad2antrr |
|
| 19 |
15
|
ad2antrr |
|
| 20 |
16
|
ad2antrr |
|
| 21 |
|
simplr |
|
| 22 |
14
|
ad2antrr |
|
| 23 |
|
simprr |
|
| 24 |
1 9 2 18 22 21 19 20 23
|
tgcgrcoml |
|
| 25 |
24
|
eqcomd |
|
| 26 |
11
|
ad4antr |
|
| 27 |
1 9 2 18 19 20 21 22 25 26
|
tgcgrneq |
|
| 28 |
10
|
ad4antr |
|
| 29 |
13
|
ad2antrr |
|
| 30 |
8
|
ad4antr |
|
| 31 |
|
simpllr |
|
| 32 |
31
|
simprd |
|
| 33 |
32
|
necomd |
|
| 34 |
|
simprl |
|
| 35 |
31
|
simpld |
|
| 36 |
1 9 2 18 30 22 29 35
|
tgbtwncom |
|
| 37 |
1 2 18 29 22 21 30 33 34 36
|
tgbtwnconn2 |
|
| 38 |
1 2 3 21 30 22 18
|
ishlg |
|
| 39 |
27 28 37 38
|
mpbir3and |
|
| 40 |
39 23
|
jca |
|
| 41 |
40
|
ex |
|
| 42 |
41
|
reximdva |
|
| 43 |
17 42
|
mpd |
|
| 44 |
1
|
fvexi |
|
| 45 |
44
|
a1i |
|
| 46 |
45 5 6 11
|
nehash2 |
|
| 47 |
1 9 2 7 8 4 46
|
tgbtwndiff |
|
| 48 |
43 47
|
r19.29a |
|