Description: Congruence commutes on the LHS. Variant of Theorem 2.5 of Schwabhauser p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tkgeom.p | ||
| tkgeom.d | |||
| tkgeom.i | |||
| tkgeom.g | |||
| tgcgrcomr.a | |||
| tgcgrcomr.b | |||
| tgcgrcomr.c | |||
| tgcgrcomr.d | |||
| tgcgrcomr.6 | |||
| Assertion | tgcgrcoml |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | ||
| 2 | tkgeom.d | ||
| 3 | tkgeom.i | ||
| 4 | tkgeom.g | ||
| 5 | tgcgrcomr.a | ||
| 6 | tgcgrcomr.b | ||
| 7 | tgcgrcomr.c | ||
| 8 | tgcgrcomr.d | ||
| 9 | tgcgrcomr.6 | ||
| 10 | 1 2 3 4 5 6 | axtgcgrrflx | |
| 11 | 10 9 | eqtr3d |