Step |
Hyp |
Ref |
Expression |
1 |
|
cgraid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
cgraid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
cgraid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
4 |
|
cgraid.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
5 |
|
cgraid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
cgraid.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
cgraid.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
cgraid.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
9 |
|
cgraid.2 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
10 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
11 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
12 |
1 10 2 11 3 5 6 7
|
cgr3id |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
13 |
1 2 4 5 5 6 3 8
|
hlid |
⊢ ( 𝜑 → 𝐴 ( 𝐾 ‘ 𝐵 ) 𝐴 ) |
14 |
9
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
15 |
1 2 4 7 5 6 3 14
|
hlid |
⊢ ( 𝜑 → 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐶 ) |
16 |
1 2 4 3 5 6 7 5 6 7 5 7 12 13 15
|
iscgrad |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |