| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cgraid.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cgraid.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | cgraid.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 4 |  | cgraid.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 5 |  | cgraid.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | cgraid.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | cgraid.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 8 |  | cgraid.1 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 9 |  | cgraid.2 | ⊢ ( 𝜑  →  𝐵  ≠  𝐶 ) | 
						
							| 10 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 11 |  | eqid | ⊢ ( cgrG ‘ 𝐺 )  =  ( cgrG ‘ 𝐺 ) | 
						
							| 12 | 1 10 2 11 3 5 6 7 | cgr3id | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 13 | 1 2 4 5 5 6 3 8 | hlid | ⊢ ( 𝜑  →  𝐴 ( 𝐾 ‘ 𝐵 ) 𝐴 ) | 
						
							| 14 | 9 | necomd | ⊢ ( 𝜑  →  𝐶  ≠  𝐵 ) | 
						
							| 15 | 1 2 4 7 5 6 3 14 | hlid | ⊢ ( 𝜑  →  𝐶 ( 𝐾 ‘ 𝐵 ) 𝐶 ) | 
						
							| 16 | 1 2 4 3 5 6 7 5 6 7 5 7 12 13 15 | iscgrad | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |