| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cgraid.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | cgraid.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | cgraid.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 4 |  | cgraid.k |  |-  K = ( hlG ` G ) | 
						
							| 5 |  | cgraid.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | cgraid.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | cgraid.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | cgraid.1 |  |-  ( ph -> A =/= B ) | 
						
							| 9 |  | cgraid.2 |  |-  ( ph -> B =/= C ) | 
						
							| 10 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 11 |  | eqid |  |-  ( cgrG ` G ) = ( cgrG ` G ) | 
						
							| 12 | 1 10 2 11 3 5 6 7 | cgr3id |  |-  ( ph -> <" A B C "> ( cgrG ` G ) <" A B C "> ) | 
						
							| 13 | 1 2 4 5 5 6 3 8 | hlid |  |-  ( ph -> A ( K ` B ) A ) | 
						
							| 14 | 9 | necomd |  |-  ( ph -> C =/= B ) | 
						
							| 15 | 1 2 4 7 5 6 3 14 | hlid |  |-  ( ph -> C ( K ` B ) C ) | 
						
							| 16 | 1 2 4 3 5 6 7 5 6 7 5 7 12 13 15 | iscgrad |  |-  ( ph -> <" A B C "> ( cgrA ` G ) <" A B C "> ) |