| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgsas.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tgsas.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | tgsas.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | tgsas.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | tgsas.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | tgsas.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | tgsas.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | tgsas.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | tgsas.e |  |-  ( ph -> E e. P ) | 
						
							| 10 |  | tgsas.f |  |-  ( ph -> F e. P ) | 
						
							| 11 |  | tgasa.l |  |-  L = ( LineG ` G ) | 
						
							| 12 |  | tgasa.1 |  |-  ( ph -> -. ( C e. ( A L B ) \/ A = B ) ) | 
						
							| 13 |  | tgasa.2 |  |-  ( ph -> ( A .- B ) = ( D .- E ) ) | 
						
							| 14 |  | tgasa.3 |  |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) | 
						
							| 15 |  | tgasa.4 |  |-  ( ph -> <" C A B "> ( cgrA ` G ) <" F D E "> ) | 
						
							| 16 |  | simprr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( E .- f ) = ( B .- C ) ) | 
						
							| 17 | 4 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> G e. TarskiG ) | 
						
							| 18 | 10 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> F e. P ) | 
						
							| 19 | 8 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> D e. P ) | 
						
							| 20 | 9 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> E e. P ) | 
						
							| 21 | 1 3 2 4 5 6 7 8 9 10 14 11 12 | cgrancol |  |-  ( ph -> -. ( F e. ( D L E ) \/ D = E ) ) | 
						
							| 22 | 21 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> -. ( F e. ( D L E ) \/ D = E ) ) | 
						
							| 23 |  | eqid |  |-  ( hlG ` G ) = ( hlG ` G ) | 
						
							| 24 |  | simplr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f e. P ) | 
						
							| 25 | 7 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> C e. P ) | 
						
							| 26 | 5 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> A e. P ) | 
						
							| 27 | 6 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> B e. P ) | 
						
							| 28 | 12 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> -. ( C e. ( A L B ) \/ A = B ) ) | 
						
							| 29 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> G e. TarskiG ) | 
						
							| 30 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> D e. P ) | 
						
							| 31 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> E e. P ) | 
						
							| 32 | 10 | ad3antrrr |  |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> F e. P ) | 
						
							| 33 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> A e. P ) | 
						
							| 34 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> B e. P ) | 
						
							| 35 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> C e. P ) | 
						
							| 36 | 1 3 4 23 5 6 7 8 9 10 14 | cgracom |  |-  ( ph -> <" D E F "> ( cgrA ` G ) <" A B C "> ) | 
						
							| 37 | 36 | ad3antrrr |  |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> <" D E F "> ( cgrA ` G ) <" A B C "> ) | 
						
							| 38 |  | simpr |  |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> ( E e. ( D L F ) \/ D = F ) ) | 
						
							| 39 | 1 11 3 29 30 32 31 38 | colcom |  |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> ( E e. ( F L D ) \/ F = D ) ) | 
						
							| 40 | 1 11 3 29 32 30 31 39 | colrot1 |  |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> ( F e. ( D L E ) \/ D = E ) ) | 
						
							| 41 | 1 3 2 29 30 31 32 33 34 35 37 11 40 | cgracol |  |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> ( C e. ( A L B ) \/ A = B ) ) | 
						
							| 42 | 12 | ad3antrrr |  |-  ( ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) /\ ( E e. ( D L F ) \/ D = F ) ) -> -. ( C e. ( A L B ) \/ A = B ) ) | 
						
							| 43 | 41 42 | pm2.65da |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> -. ( E e. ( D L F ) \/ D = F ) ) | 
						
							| 44 |  | eqid |  |-  ( cgrG ` G ) = ( cgrG ` G ) | 
						
							| 45 | 14 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> <" A B C "> ( cgrA ` G ) <" D E F "> ) | 
						
							| 46 |  | simprl |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f ( ( hlG ` G ) ` E ) F ) | 
						
							| 47 | 1 3 23 17 26 27 25 19 20 18 45 24 46 | cgrahl2 |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> <" A B C "> ( cgrA ` G ) <" D E f "> ) | 
						
							| 48 | 1 3 23 4 5 6 7 8 9 10 14 | cgrane1 |  |-  ( ph -> A =/= B ) | 
						
							| 49 | 1 3 23 5 5 6 4 48 | hlid |  |-  ( ph -> A ( ( hlG ` G ) ` B ) A ) | 
						
							| 50 | 49 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> A ( ( hlG ` G ) ` B ) A ) | 
						
							| 51 | 1 3 23 4 5 6 7 8 9 10 14 | cgrane2 |  |-  ( ph -> B =/= C ) | 
						
							| 52 | 51 | necomd |  |-  ( ph -> C =/= B ) | 
						
							| 53 | 1 3 23 7 5 6 4 52 | hlid |  |-  ( ph -> C ( ( hlG ` G ) ` B ) C ) | 
						
							| 54 | 53 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> C ( ( hlG ` G ) ` B ) C ) | 
						
							| 55 | 1 2 3 4 5 6 8 9 13 | tgcgrcomlr |  |-  ( ph -> ( B .- A ) = ( E .- D ) ) | 
						
							| 56 | 55 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( B .- A ) = ( E .- D ) ) | 
						
							| 57 | 16 | eqcomd |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( B .- C ) = ( E .- f ) ) | 
						
							| 58 | 1 3 23 17 26 27 25 19 20 24 47 26 2 25 50 54 56 57 | cgracgr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( A .- C ) = ( D .- f ) ) | 
						
							| 59 | 1 2 3 17 26 25 19 24 58 | tgcgrcomlr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( C .- A ) = ( f .- D ) ) | 
						
							| 60 | 13 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( A .- B ) = ( D .- E ) ) | 
						
							| 61 | 1 2 44 17 25 26 27 24 19 20 59 60 57 | trgcgr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> <" C A B "> ( cgrG ` G ) <" f D E "> ) | 
						
							| 62 | 1 3 11 4 7 5 6 12 | ncolne1 |  |-  ( ph -> C =/= A ) | 
						
							| 63 | 62 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> C =/= A ) | 
						
							| 64 | 1 2 3 17 25 26 24 19 59 63 | tgcgrneq |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f =/= D ) | 
						
							| 65 | 1 3 23 24 18 19 17 64 | hlid |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f ( ( hlG ` G ) ` D ) f ) | 
						
							| 66 | 1 3 23 4 7 5 6 10 8 9 15 | cgrane4 |  |-  ( ph -> D =/= E ) | 
						
							| 67 | 66 | necomd |  |-  ( ph -> E =/= D ) | 
						
							| 68 | 1 3 23 9 5 8 4 67 | hlid |  |-  ( ph -> E ( ( hlG ` G ) ` D ) E ) | 
						
							| 69 | 68 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> E ( ( hlG ` G ) ` D ) E ) | 
						
							| 70 | 1 3 23 17 25 26 27 24 19 20 24 20 61 65 69 | iscgrad |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> <" C A B "> ( cgrA ` G ) <" f D E "> ) | 
						
							| 71 | 66 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> D =/= E ) | 
						
							| 72 | 1 3 17 23 24 19 20 64 71 | cgraswap |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> <" f D E "> ( cgrA ` G ) <" E D f "> ) | 
						
							| 73 | 1 3 17 23 25 26 27 24 19 20 70 20 19 24 72 | cgratr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> <" C A B "> ( cgrA ` G ) <" E D f "> ) | 
						
							| 74 | 1 3 23 4 7 5 6 10 8 9 15 | cgrane3 |  |-  ( ph -> D =/= F ) | 
						
							| 75 | 74 | necomd |  |-  ( ph -> F =/= D ) | 
						
							| 76 | 1 3 4 23 10 8 9 75 66 | cgraswap |  |-  ( ph -> <" F D E "> ( cgrA ` G ) <" E D F "> ) | 
						
							| 77 | 1 3 4 23 7 5 6 10 8 9 15 9 8 10 76 | cgratr |  |-  ( ph -> <" C A B "> ( cgrA ` G ) <" E D F "> ) | 
						
							| 78 | 77 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> <" C A B "> ( cgrA ` G ) <" E D F "> ) | 
						
							| 79 | 1 3 11 4 9 8 67 | tgelrnln |  |-  ( ph -> ( E L D ) e. ran L ) | 
						
							| 80 | 79 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( E L D ) e. ran L ) | 
						
							| 81 |  | simpl |  |-  ( ( a = u /\ b = v ) -> a = u ) | 
						
							| 82 | 81 | eleq1d |  |-  ( ( a = u /\ b = v ) -> ( a e. ( P \ ( E L D ) ) <-> u e. ( P \ ( E L D ) ) ) ) | 
						
							| 83 |  | simpr |  |-  ( ( a = u /\ b = v ) -> b = v ) | 
						
							| 84 | 83 | eleq1d |  |-  ( ( a = u /\ b = v ) -> ( b e. ( P \ ( E L D ) ) <-> v e. ( P \ ( E L D ) ) ) ) | 
						
							| 85 | 82 84 | anbi12d |  |-  ( ( a = u /\ b = v ) -> ( ( a e. ( P \ ( E L D ) ) /\ b e. ( P \ ( E L D ) ) ) <-> ( u e. ( P \ ( E L D ) ) /\ v e. ( P \ ( E L D ) ) ) ) ) | 
						
							| 86 |  | simpr |  |-  ( ( ( a = u /\ b = v ) /\ t = w ) -> t = w ) | 
						
							| 87 |  | simpll |  |-  ( ( ( a = u /\ b = v ) /\ t = w ) -> a = u ) | 
						
							| 88 |  | simplr |  |-  ( ( ( a = u /\ b = v ) /\ t = w ) -> b = v ) | 
						
							| 89 | 87 88 | oveq12d |  |-  ( ( ( a = u /\ b = v ) /\ t = w ) -> ( a I b ) = ( u I v ) ) | 
						
							| 90 | 86 89 | eleq12d |  |-  ( ( ( a = u /\ b = v ) /\ t = w ) -> ( t e. ( a I b ) <-> w e. ( u I v ) ) ) | 
						
							| 91 | 90 | cbvrexdva |  |-  ( ( a = u /\ b = v ) -> ( E. t e. ( E L D ) t e. ( a I b ) <-> E. w e. ( E L D ) w e. ( u I v ) ) ) | 
						
							| 92 | 85 91 | anbi12d |  |-  ( ( a = u /\ b = v ) -> ( ( ( a e. ( P \ ( E L D ) ) /\ b e. ( P \ ( E L D ) ) ) /\ E. t e. ( E L D ) t e. ( a I b ) ) <-> ( ( u e. ( P \ ( E L D ) ) /\ v e. ( P \ ( E L D ) ) ) /\ E. w e. ( E L D ) w e. ( u I v ) ) ) ) | 
						
							| 93 | 92 | cbvopabv |  |-  { <. a , b >. | ( ( a e. ( P \ ( E L D ) ) /\ b e. ( P \ ( E L D ) ) ) /\ E. t e. ( E L D ) t e. ( a I b ) ) } = { <. u , v >. | ( ( u e. ( P \ ( E L D ) ) /\ v e. ( P \ ( E L D ) ) ) /\ E. w e. ( E L D ) w e. ( u I v ) ) } | 
						
							| 94 | 1 3 11 4 9 8 67 | tglinerflx1 |  |-  ( ph -> E e. ( E L D ) ) | 
						
							| 95 | 94 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> E e. ( E L D ) ) | 
						
							| 96 | 1 11 3 4 8 9 10 21 | ncolcom |  |-  ( ph -> -. ( F e. ( E L D ) \/ E = D ) ) | 
						
							| 97 |  | pm2.45 |  |-  ( -. ( F e. ( E L D ) \/ E = D ) -> -. F e. ( E L D ) ) | 
						
							| 98 | 96 97 | syl |  |-  ( ph -> -. F e. ( E L D ) ) | 
						
							| 99 | 98 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> -. F e. ( E L D ) ) | 
						
							| 100 | 1 3 23 24 18 20 17 46 | hlcomd |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> F ( ( hlG ` G ) ` E ) f ) | 
						
							| 101 | 1 3 11 17 80 20 93 23 95 18 24 99 100 | hphl |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> F ( ( hpG ` G ) ` ( E L D ) ) f ) | 
						
							| 102 | 1 3 11 17 80 18 93 24 101 | hpgcom |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f ( ( hpG ` G ) ` ( E L D ) ) F ) | 
						
							| 103 | 1 3 11 4 79 10 93 98 | hpgid |  |-  ( ph -> F ( ( hpG ` G ) ` ( E L D ) ) F ) | 
						
							| 104 | 103 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> F ( ( hpG ` G ) ` ( E L D ) ) F ) | 
						
							| 105 | 1 3 2 17 25 26 27 20 19 18 11 28 43 24 18 23 73 78 102 104 | acopyeu |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f ( ( hlG ` G ) ` D ) F ) | 
						
							| 106 | 1 3 23 24 18 19 17 11 105 | hlln |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f e. ( F L D ) ) | 
						
							| 107 | 1 3 11 4 10 8 75 | tglinerflx1 |  |-  ( ph -> F e. ( F L D ) ) | 
						
							| 108 | 107 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> F e. ( F L D ) ) | 
						
							| 109 | 1 3 23 4 5 6 7 8 9 10 14 | cgrane4 |  |-  ( ph -> E =/= F ) | 
						
							| 110 | 109 | ad2antrr |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> E =/= F ) | 
						
							| 111 | 1 3 23 24 18 20 17 11 46 | hlln |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f e. ( F L E ) ) | 
						
							| 112 | 1 3 11 17 20 18 24 110 111 | lncom |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f e. ( E L F ) ) | 
						
							| 113 | 1 3 11 17 20 18 110 | tglinerflx2 |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> F e. ( E L F ) ) | 
						
							| 114 | 1 3 11 17 18 19 20 18 22 106 108 112 113 | tglineinteq |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> f = F ) | 
						
							| 115 | 114 | oveq2d |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( E .- f ) = ( E .- F ) ) | 
						
							| 116 | 16 115 | eqtr3d |  |-  ( ( ( ph /\ f e. P ) /\ ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) -> ( B .- C ) = ( E .- F ) ) | 
						
							| 117 | 109 | necomd |  |-  ( ph -> F =/= E ) | 
						
							| 118 | 1 3 23 9 6 7 4 10 2 117 51 | hlcgrex |  |-  ( ph -> E. f e. P ( f ( ( hlG ` G ) ` E ) F /\ ( E .- f ) = ( B .- C ) ) ) | 
						
							| 119 | 116 118 | r19.29a |  |-  ( ph -> ( B .- C ) = ( E .- F ) ) |