Metamath Proof Explorer


Theorem cgrancol

Description: Angle congruence preserves non-colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020)

Ref Expression
Hypotheses cgracol.p
|- P = ( Base ` G )
cgracol.i
|- I = ( Itv ` G )
cgracol.m
|- .- = ( dist ` G )
cgracol.g
|- ( ph -> G e. TarskiG )
cgracol.a
|- ( ph -> A e. P )
cgracol.b
|- ( ph -> B e. P )
cgracol.c
|- ( ph -> C e. P )
cgracol.d
|- ( ph -> D e. P )
cgracol.e
|- ( ph -> E e. P )
cgracol.f
|- ( ph -> F e. P )
cgracol.1
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> )
cgrancol.l
|- L = ( LineG ` G )
cgrancol.2
|- ( ph -> -. ( C e. ( A L B ) \/ A = B ) )
Assertion cgrancol
|- ( ph -> -. ( F e. ( D L E ) \/ D = E ) )

Proof

Step Hyp Ref Expression
1 cgracol.p
 |-  P = ( Base ` G )
2 cgracol.i
 |-  I = ( Itv ` G )
3 cgracol.m
 |-  .- = ( dist ` G )
4 cgracol.g
 |-  ( ph -> G e. TarskiG )
5 cgracol.a
 |-  ( ph -> A e. P )
6 cgracol.b
 |-  ( ph -> B e. P )
7 cgracol.c
 |-  ( ph -> C e. P )
8 cgracol.d
 |-  ( ph -> D e. P )
9 cgracol.e
 |-  ( ph -> E e. P )
10 cgracol.f
 |-  ( ph -> F e. P )
11 cgracol.1
 |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> )
12 cgrancol.l
 |-  L = ( LineG ` G )
13 cgrancol.2
 |-  ( ph -> -. ( C e. ( A L B ) \/ A = B ) )
14 4 adantr
 |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> G e. TarskiG )
15 8 adantr
 |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> D e. P )
16 9 adantr
 |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> E e. P )
17 10 adantr
 |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> F e. P )
18 5 adantr
 |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> A e. P )
19 6 adantr
 |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> B e. P )
20 7 adantr
 |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> C e. P )
21 eqid
 |-  ( hlG ` G ) = ( hlG ` G )
22 11 adantr
 |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> <" A B C "> ( cgrA ` G ) <" D E F "> )
23 1 2 14 21 18 19 20 15 16 17 22 cgracom
 |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> <" D E F "> ( cgrA ` G ) <" A B C "> )
24 simpr
 |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> ( F e. ( D L E ) \/ D = E ) )
25 1 2 3 14 15 16 17 18 19 20 23 12 24 cgracol
 |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> ( C e. ( A L B ) \/ A = B ) )
26 13 25 mtand
 |-  ( ph -> -. ( F e. ( D L E ) \/ D = E ) )