| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cgracol.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | cgracol.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | cgracol.m |  |-  .- = ( dist ` G ) | 
						
							| 4 |  | cgracol.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | cgracol.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | cgracol.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | cgracol.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | cgracol.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | cgracol.e |  |-  ( ph -> E e. P ) | 
						
							| 10 |  | cgracol.f |  |-  ( ph -> F e. P ) | 
						
							| 11 |  | cgracol.1 |  |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) | 
						
							| 12 |  | cgrancol.l |  |-  L = ( LineG ` G ) | 
						
							| 13 |  | cgrancol.2 |  |-  ( ph -> -. ( C e. ( A L B ) \/ A = B ) ) | 
						
							| 14 | 4 | adantr |  |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> G e. TarskiG ) | 
						
							| 15 | 8 | adantr |  |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> D e. P ) | 
						
							| 16 | 9 | adantr |  |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> E e. P ) | 
						
							| 17 | 10 | adantr |  |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> F e. P ) | 
						
							| 18 | 5 | adantr |  |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> A e. P ) | 
						
							| 19 | 6 | adantr |  |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> B e. P ) | 
						
							| 20 | 7 | adantr |  |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> C e. P ) | 
						
							| 21 |  | eqid |  |-  ( hlG ` G ) = ( hlG ` G ) | 
						
							| 22 | 11 | adantr |  |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> <" A B C "> ( cgrA ` G ) <" D E F "> ) | 
						
							| 23 | 1 2 14 21 18 19 20 15 16 17 22 | cgracom |  |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> <" D E F "> ( cgrA ` G ) <" A B C "> ) | 
						
							| 24 |  | simpr |  |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> ( F e. ( D L E ) \/ D = E ) ) | 
						
							| 25 | 1 2 3 14 15 16 17 18 19 20 23 12 24 | cgracol |  |-  ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> ( C e. ( A L B ) \/ A = B ) ) | 
						
							| 26 | 13 25 | mtand |  |-  ( ph -> -. ( F e. ( D L E ) \/ D = E ) ) |