Step |
Hyp |
Ref |
Expression |
1 |
|
cgracol.p |
|- P = ( Base ` G ) |
2 |
|
cgracol.i |
|- I = ( Itv ` G ) |
3 |
|
cgracol.m |
|- .- = ( dist ` G ) |
4 |
|
cgracol.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
cgracol.a |
|- ( ph -> A e. P ) |
6 |
|
cgracol.b |
|- ( ph -> B e. P ) |
7 |
|
cgracol.c |
|- ( ph -> C e. P ) |
8 |
|
cgracol.d |
|- ( ph -> D e. P ) |
9 |
|
cgracol.e |
|- ( ph -> E e. P ) |
10 |
|
cgracol.f |
|- ( ph -> F e. P ) |
11 |
|
cgracol.1 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
12 |
|
cgrancol.l |
|- L = ( LineG ` G ) |
13 |
|
cgrancol.2 |
|- ( ph -> -. ( C e. ( A L B ) \/ A = B ) ) |
14 |
4
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> G e. TarskiG ) |
15 |
8
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> D e. P ) |
16 |
9
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> E e. P ) |
17 |
10
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> F e. P ) |
18 |
5
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> A e. P ) |
19 |
6
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> B e. P ) |
20 |
7
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> C e. P ) |
21 |
|
eqid |
|- ( hlG ` G ) = ( hlG ` G ) |
22 |
11
|
adantr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
23 |
1 2 14 21 18 19 20 15 16 17 22
|
cgracom |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> <" D E F "> ( cgrA ` G ) <" A B C "> ) |
24 |
|
simpr |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> ( F e. ( D L E ) \/ D = E ) ) |
25 |
1 2 3 14 15 16 17 18 19 20 23 12 24
|
cgracol |
|- ( ( ph /\ ( F e. ( D L E ) \/ D = E ) ) -> ( C e. ( A L B ) \/ A = B ) ) |
26 |
13 25
|
mtand |
|- ( ph -> -. ( F e. ( D L E ) \/ D = E ) ) |