| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cgracol.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cgracol.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | cgracol.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 4 |  | cgracol.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | cgracol.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | cgracol.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | cgracol.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 8 |  | cgracol.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | cgracol.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑃 ) | 
						
							| 10 |  | cgracol.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑃 ) | 
						
							| 11 |  | cgracol.1 | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 12 |  | cgrancol.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 13 |  | cgrancol.2 | ⊢ ( 𝜑  →  ¬  ( 𝐶  ∈  ( 𝐴 𝐿 𝐵 )  ∨  𝐴  =  𝐵 ) ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 15 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 16 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) )  →  𝐸  ∈  𝑃 ) | 
						
							| 17 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) )  →  𝐹  ∈  𝑃 ) | 
						
							| 18 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 19 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 20 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 21 |  | eqid | ⊢ ( hlG ‘ 𝐺 )  =  ( hlG ‘ 𝐺 ) | 
						
							| 22 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) )  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 23 | 1 2 14 21 18 19 20 15 16 17 22 | cgracom | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) )  →  〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) )  →  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) ) | 
						
							| 25 | 1 2 3 14 15 16 17 18 19 20 23 12 24 | cgracol | ⊢ ( ( 𝜑  ∧  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) )  →  ( 𝐶  ∈  ( 𝐴 𝐿 𝐵 )  ∨  𝐴  =  𝐵 ) ) | 
						
							| 26 | 13 25 | mtand | ⊢ ( 𝜑  →  ¬  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) ) |