Metamath Proof Explorer


Theorem cgrancol

Description: Angle congruence preserves non-colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020)

Ref Expression
Hypotheses cgracol.p 𝑃 = ( Base ‘ 𝐺 )
cgracol.i 𝐼 = ( Itv ‘ 𝐺 )
cgracol.m = ( dist ‘ 𝐺 )
cgracol.g ( 𝜑𝐺 ∈ TarskiG )
cgracol.a ( 𝜑𝐴𝑃 )
cgracol.b ( 𝜑𝐵𝑃 )
cgracol.c ( 𝜑𝐶𝑃 )
cgracol.d ( 𝜑𝐷𝑃 )
cgracol.e ( 𝜑𝐸𝑃 )
cgracol.f ( 𝜑𝐹𝑃 )
cgracol.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
cgrancol.l 𝐿 = ( LineG ‘ 𝐺 )
cgrancol.2 ( 𝜑 → ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) )
Assertion cgrancol ( 𝜑 → ¬ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) )

Proof

Step Hyp Ref Expression
1 cgracol.p 𝑃 = ( Base ‘ 𝐺 )
2 cgracol.i 𝐼 = ( Itv ‘ 𝐺 )
3 cgracol.m = ( dist ‘ 𝐺 )
4 cgracol.g ( 𝜑𝐺 ∈ TarskiG )
5 cgracol.a ( 𝜑𝐴𝑃 )
6 cgracol.b ( 𝜑𝐵𝑃 )
7 cgracol.c ( 𝜑𝐶𝑃 )
8 cgracol.d ( 𝜑𝐷𝑃 )
9 cgracol.e ( 𝜑𝐸𝑃 )
10 cgracol.f ( 𝜑𝐹𝑃 )
11 cgracol.1 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
12 cgrancol.l 𝐿 = ( LineG ‘ 𝐺 )
13 cgrancol.2 ( 𝜑 → ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) )
14 4 adantr ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐺 ∈ TarskiG )
15 8 adantr ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐷𝑃 )
16 9 adantr ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐸𝑃 )
17 10 adantr ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐹𝑃 )
18 5 adantr ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐴𝑃 )
19 6 adantr ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐵𝑃 )
20 7 adantr ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → 𝐶𝑃 )
21 eqid ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 )
22 11 adantr ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐷 𝐸 𝐹 ”⟩ )
23 1 2 14 21 18 19 20 15 16 17 22 cgracom ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → ⟨“ 𝐷 𝐸 𝐹 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐴 𝐵 𝐶 ”⟩ )
24 simpr ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) )
25 1 2 3 14 15 16 17 18 19 20 23 12 24 cgracol ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) )
26 13 25 mtand ( 𝜑 → ¬ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) )