| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cgracol.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cgracol.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | cgracol.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 4 |  | cgracol.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | cgracol.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 6 |  | cgracol.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 7 |  | cgracol.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 8 |  | cgracol.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | cgracol.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑃 ) | 
						
							| 10 |  | cgracol.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑃 ) | 
						
							| 11 |  | cgracol.1 | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 12 |  | cgracol.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 13 |  | cgracol.2 | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 𝐿 𝐵 )  ∨  𝐴  =  𝐵 ) ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 15 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 16 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 17 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 18 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 19 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐸  ∈  𝑃 ) | 
						
							| 20 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐹  ∈  𝑃 ) | 
						
							| 21 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 22 |  | eqid | ⊢ ( hlG ‘ 𝐺 )  =  ( hlG ‘ 𝐺 ) | 
						
							| 23 | 1 2 22 4 5 6 7 8 9 10 11 | cgrane2 | ⊢ ( 𝜑  →  𝐵  ≠  𝐶 ) | 
						
							| 24 | 23 | necomd | ⊢ ( 𝜑  →  𝐶  ≠  𝐵 ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ≠  𝐵 ) | 
						
							| 26 | 1 2 22 4 5 6 7 8 9 10 11 | cgrane1 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐴  ≠  𝐵 ) | 
						
							| 28 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 29 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 30 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 31 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 32 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 33 | 1 3 2 28 29 30 31 32 | tgbtwncom | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝐵 𝐼 𝐴 ) ) | 
						
							| 34 | 33 | orcd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) | 
						
							| 35 | 25 27 34 | 3jca | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) | 
						
							| 36 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐶  ≠  𝐵 ) | 
						
							| 37 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐴  ≠  𝐵 ) | 
						
							| 38 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 39 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 40 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 41 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 42 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) | 
						
							| 43 | 1 3 2 38 39 40 41 42 | tgbtwncom | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) | 
						
							| 44 | 43 | olcd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) | 
						
							| 45 | 36 37 44 | 3jca | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  →  ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) | 
						
							| 46 | 35 45 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) | 
						
							| 47 | 1 2 22 7 5 6 4 | ishlg | ⊢ ( 𝜑  →  ( 𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐴  ↔  ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  ( 𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐴  ↔  ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) ) | 
						
							| 49 | 46 48 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐴 ) | 
						
							| 50 | 1 2 22 17 15 16 14 49 | hlcomd | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐴 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐶 ) | 
						
							| 51 | 1 2 3 14 15 16 17 18 19 20 21 22 50 | cgrahl | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐷 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ) | 
						
							| 52 | 1 2 22 18 20 19 14 | ishlg | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  ( 𝐷 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹  ↔  ( 𝐷  ≠  𝐸  ∧  𝐹  ≠  𝐸  ∧  ( 𝐷  ∈  ( 𝐸 𝐼 𝐹 )  ∨  𝐹  ∈  ( 𝐸 𝐼 𝐷 ) ) ) ) ) | 
						
							| 53 | 51 52 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  ( 𝐷  ≠  𝐸  ∧  𝐹  ≠  𝐸  ∧  ( 𝐷  ∈  ( 𝐸 𝐼 𝐹 )  ∨  𝐹  ∈  ( 𝐸 𝐼 𝐷 ) ) ) ) | 
						
							| 54 | 53 | simp3d | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  ( 𝐷  ∈  ( 𝐸 𝐼 𝐹 )  ∨  𝐹  ∈  ( 𝐸 𝐼 𝐷 ) ) ) | 
						
							| 55 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐸 𝐼 𝐹 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 56 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐸 𝐼 𝐹 ) )  →  𝐸  ∈  𝑃 ) | 
						
							| 57 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐸 𝐼 𝐹 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 58 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐸 𝐼 𝐹 ) )  →  𝐹  ∈  𝑃 ) | 
						
							| 59 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐸 𝐼 𝐹 ) )  →  𝐷  ∈  ( 𝐸 𝐼 𝐹 ) ) | 
						
							| 60 | 1 3 2 55 56 57 58 59 | tgbtwncom | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐸 𝐼 𝐹 ) )  →  𝐷  ∈  ( 𝐹 𝐼 𝐸 ) ) | 
						
							| 61 | 60 | olcd | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ( 𝐸 𝐼 𝐹 ) )  →  ( 𝐹  ∈  ( 𝐷 𝐼 𝐸 )  ∨  𝐷  ∈  ( 𝐹 𝐼 𝐸 ) ) ) | 
						
							| 62 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( 𝐸 𝐼 𝐷 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 63 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( 𝐸 𝐼 𝐷 ) )  →  𝐸  ∈  𝑃 ) | 
						
							| 64 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( 𝐸 𝐼 𝐷 ) )  →  𝐹  ∈  𝑃 ) | 
						
							| 65 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( 𝐸 𝐼 𝐷 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 66 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( 𝐸 𝐼 𝐷 ) )  →  𝐹  ∈  ( 𝐸 𝐼 𝐷 ) ) | 
						
							| 67 | 1 3 2 62 63 64 65 66 | tgbtwncom | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( 𝐸 𝐼 𝐷 ) )  →  𝐹  ∈  ( 𝐷 𝐼 𝐸 ) ) | 
						
							| 68 | 67 | orcd | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( 𝐸 𝐼 𝐷 ) )  →  ( 𝐹  ∈  ( 𝐷 𝐼 𝐸 )  ∨  𝐷  ∈  ( 𝐹 𝐼 𝐸 ) ) ) | 
						
							| 69 | 61 68 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝐷  ∈  ( 𝐸 𝐼 𝐹 )  ∨  𝐹  ∈  ( 𝐸 𝐼 𝐷 ) ) )  →  ( 𝐹  ∈  ( 𝐷 𝐼 𝐸 )  ∨  𝐷  ∈  ( 𝐹 𝐼 𝐸 ) ) ) | 
						
							| 70 | 54 69 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  ( 𝐹  ∈  ( 𝐷 𝐼 𝐸 )  ∨  𝐷  ∈  ( 𝐹 𝐼 𝐸 ) ) ) | 
						
							| 71 | 70 | orcd | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  ( ( 𝐹  ∈  ( 𝐷 𝐼 𝐸 )  ∨  𝐷  ∈  ( 𝐹 𝐼 𝐸 ) )  ∨  𝐸  ∈  ( 𝐷 𝐼 𝐹 ) ) ) | 
						
							| 72 |  | df-3or | ⊢ ( ( 𝐹  ∈  ( 𝐷 𝐼 𝐸 )  ∨  𝐷  ∈  ( 𝐹 𝐼 𝐸 )  ∨  𝐸  ∈  ( 𝐷 𝐼 𝐹 ) )  ↔  ( ( 𝐹  ∈  ( 𝐷 𝐼 𝐸 )  ∨  𝐷  ∈  ( 𝐹 𝐼 𝐸 ) )  ∨  𝐸  ∈  ( 𝐷 𝐼 𝐹 ) ) ) | 
						
							| 73 | 71 72 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  ( 𝐹  ∈  ( 𝐷 𝐼 𝐸 )  ∨  𝐷  ∈  ( 𝐹 𝐼 𝐸 )  ∨  𝐸  ∈  ( 𝐷 𝐼 𝐹 ) ) ) | 
						
							| 74 | 1 2 4 22 5 6 7 8 9 10 11 | cgracom | ⊢ ( 𝜑  →  〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 75 | 1 2 22 4 8 9 10 5 6 7 74 | cgrane1 | ⊢ ( 𝜑  →  𝐷  ≠  𝐸 ) | 
						
							| 76 | 1 12 2 4 8 9 75 10 | tgellng | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ↔  ( 𝐹  ∈  ( 𝐷 𝐼 𝐸 )  ∨  𝐷  ∈  ( 𝐹 𝐼 𝐸 )  ∨  𝐸  ∈  ( 𝐷 𝐼 𝐹 ) ) ) ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ↔  ( 𝐹  ∈  ( 𝐷 𝐼 𝐸 )  ∨  𝐷  ∈  ( 𝐹 𝐼 𝐸 )  ∨  𝐸  ∈  ( 𝐷 𝐼 𝐹 ) ) ) ) | 
						
							| 78 | 73 77 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  𝐹  ∈  ( 𝐷 𝐿 𝐸 ) ) | 
						
							| 79 | 78 | orcd | ⊢ ( ( 𝜑  ∧  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) )  →  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) ) | 
						
							| 80 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 81 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 82 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐸  ∈  𝑃 ) | 
						
							| 83 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐹  ∈  𝑃 ) | 
						
							| 84 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 85 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 86 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 87 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) | 
						
							| 88 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 89 | 1 2 3 80 84 85 86 81 82 83 87 88 | cgrabtwn | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐸  ∈  ( 𝐷 𝐼 𝐹 ) ) | 
						
							| 90 | 1 12 2 80 81 82 83 89 | btwncolg3 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) ) | 
						
							| 91 | 26 | neneqd | ⊢ ( 𝜑  →  ¬  𝐴  =  𝐵 ) | 
						
							| 92 | 13 | orcomd | ⊢ ( 𝜑  →  ( 𝐴  =  𝐵  ∨  𝐶  ∈  ( 𝐴 𝐿 𝐵 ) ) ) | 
						
							| 93 | 92 | ord | ⊢ ( 𝜑  →  ( ¬  𝐴  =  𝐵  →  𝐶  ∈  ( 𝐴 𝐿 𝐵 ) ) ) | 
						
							| 94 | 91 93 | mpd | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 𝐿 𝐵 ) ) | 
						
							| 95 | 1 12 2 4 5 6 26 7 | tgellng | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 𝐿 𝐵 )  ↔  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) ) | 
						
							| 96 | 94 95 | mpbid | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) | 
						
							| 97 |  | df-3or | ⊢ ( ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  ↔  ( ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) | 
						
							| 98 | 96 97 | sylib | ⊢ ( 𝜑  →  ( ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) | 
						
							| 99 | 79 90 98 | mpjaodan | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝐷 𝐿 𝐸 )  ∨  𝐷  =  𝐸 ) ) |