Step |
Hyp |
Ref |
Expression |
1 |
|
cgracol.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
cgracol.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
cgracol.m |
⊢ − = ( dist ‘ 𝐺 ) |
4 |
|
cgracol.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
cgracol.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
6 |
|
cgracol.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
7 |
|
cgracol.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
8 |
|
cgracol.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
9 |
|
cgracol.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
10 |
|
cgracol.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
11 |
|
cgracol.1 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
12 |
|
cgracol.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
13 |
|
cgracol.2 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
14 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐺 ∈ TarskiG ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐴 ∈ 𝑃 ) |
16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐵 ∈ 𝑃 ) |
17 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐶 ∈ 𝑃 ) |
18 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐷 ∈ 𝑃 ) |
19 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐸 ∈ 𝑃 ) |
20 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐹 ∈ 𝑃 ) |
21 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
22 |
|
eqid |
⊢ ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 ) |
23 |
1 2 22 4 5 6 7 8 9 10 11
|
cgrane2 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
24 |
23
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ≠ 𝐵 ) |
26 |
1 2 22 4 5 6 7 8 9 10 11
|
cgrane1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 ≠ 𝐵 ) |
28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
29 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
31 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) |
33 |
1 3 2 28 29 30 31 32
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) |
34 |
33
|
orcd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ) |
35 |
25 27 34
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) |
36 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐶 ≠ 𝐵 ) |
37 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ≠ 𝐵 ) |
38 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
39 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
40 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
41 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) |
43 |
1 3 2 38 39 40 41 42
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) |
44 |
43
|
olcd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ) |
45 |
36 37 44
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) |
46 |
35 45
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) |
47 |
1 2 22 7 5 6 4
|
ishlg |
⊢ ( 𝜑 → ( 𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐴 ↔ ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → ( 𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐴 ↔ ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) ) |
49 |
46 48
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐴 ) |
50 |
1 2 22 17 15 16 14 49
|
hlcomd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐴 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐶 ) |
51 |
1 2 3 14 15 16 17 18 19 20 21 22 50
|
cgrahl |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐷 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ) |
52 |
1 2 22 18 20 19 14
|
ishlg |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → ( 𝐷 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ↔ ( 𝐷 ≠ 𝐸 ∧ 𝐹 ≠ 𝐸 ∧ ( 𝐷 ∈ ( 𝐸 𝐼 𝐹 ) ∨ 𝐹 ∈ ( 𝐸 𝐼 𝐷 ) ) ) ) ) |
53 |
51 52
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → ( 𝐷 ≠ 𝐸 ∧ 𝐹 ≠ 𝐸 ∧ ( 𝐷 ∈ ( 𝐸 𝐼 𝐹 ) ∨ 𝐹 ∈ ( 𝐸 𝐼 𝐷 ) ) ) ) |
54 |
53
|
simp3d |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → ( 𝐷 ∈ ( 𝐸 𝐼 𝐹 ) ∨ 𝐹 ∈ ( 𝐸 𝐼 𝐷 ) ) ) |
55 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐸 𝐼 𝐹 ) ) → 𝐺 ∈ TarskiG ) |
56 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐸 𝐼 𝐹 ) ) → 𝐸 ∈ 𝑃 ) |
57 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐸 𝐼 𝐹 ) ) → 𝐷 ∈ 𝑃 ) |
58 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐸 𝐼 𝐹 ) ) → 𝐹 ∈ 𝑃 ) |
59 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐸 𝐼 𝐹 ) ) → 𝐷 ∈ ( 𝐸 𝐼 𝐹 ) ) |
60 |
1 3 2 55 56 57 58 59
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐸 𝐼 𝐹 ) ) → 𝐷 ∈ ( 𝐹 𝐼 𝐸 ) ) |
61 |
60
|
olcd |
⊢ ( ( 𝜑 ∧ 𝐷 ∈ ( 𝐸 𝐼 𝐹 ) ) → ( 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ∨ 𝐷 ∈ ( 𝐹 𝐼 𝐸 ) ) ) |
62 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐸 𝐼 𝐷 ) ) → 𝐺 ∈ TarskiG ) |
63 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐸 𝐼 𝐷 ) ) → 𝐸 ∈ 𝑃 ) |
64 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐸 𝐼 𝐷 ) ) → 𝐹 ∈ 𝑃 ) |
65 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐸 𝐼 𝐷 ) ) → 𝐷 ∈ 𝑃 ) |
66 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐸 𝐼 𝐷 ) ) → 𝐹 ∈ ( 𝐸 𝐼 𝐷 ) ) |
67 |
1 3 2 62 63 64 65 66
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐸 𝐼 𝐷 ) ) → 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ) |
68 |
67
|
orcd |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( 𝐸 𝐼 𝐷 ) ) → ( 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ∨ 𝐷 ∈ ( 𝐹 𝐼 𝐸 ) ) ) |
69 |
61 68
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ ( 𝐸 𝐼 𝐹 ) ∨ 𝐹 ∈ ( 𝐸 𝐼 𝐷 ) ) ) → ( 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ∨ 𝐷 ∈ ( 𝐹 𝐼 𝐸 ) ) ) |
70 |
54 69
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → ( 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ∨ 𝐷 ∈ ( 𝐹 𝐼 𝐸 ) ) ) |
71 |
70
|
orcd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → ( ( 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ∨ 𝐷 ∈ ( 𝐹 𝐼 𝐸 ) ) ∨ 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) ) |
72 |
|
df-3or |
⊢ ( ( 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ∨ 𝐷 ∈ ( 𝐹 𝐼 𝐸 ) ∨ 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) ↔ ( ( 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ∨ 𝐷 ∈ ( 𝐹 𝐼 𝐸 ) ) ∨ 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) ) |
73 |
71 72
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → ( 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ∨ 𝐷 ∈ ( 𝐹 𝐼 𝐸 ) ∨ 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) ) |
74 |
1 2 4 22 5 6 7 8 9 10 11
|
cgracom |
⊢ ( 𝜑 → 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
75 |
1 2 22 4 8 9 10 5 6 7 74
|
cgrane1 |
⊢ ( 𝜑 → 𝐷 ≠ 𝐸 ) |
76 |
1 12 2 4 8 9 75 10
|
tgellng |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ↔ ( 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ∨ 𝐷 ∈ ( 𝐹 𝐼 𝐸 ) ∨ 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) ) ) |
77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ↔ ( 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ∨ 𝐷 ∈ ( 𝐹 𝐼 𝐸 ) ∨ 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) ) ) |
78 |
73 77
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ) |
79 |
78
|
orcd |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) → ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) |
80 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
81 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐷 ∈ 𝑃 ) |
82 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐸 ∈ 𝑃 ) |
83 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐹 ∈ 𝑃 ) |
84 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐴 ∈ 𝑃 ) |
85 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵 ∈ 𝑃 ) |
86 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
87 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
88 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
89 |
1 2 3 80 84 85 86 81 82 83 87 88
|
cgrabtwn |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) |
90 |
1 12 2 80 81 82 83 89
|
btwncolg3 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) |
91 |
26
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 ) |
92 |
13
|
orcomd |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ∨ 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ) ) |
93 |
92
|
ord |
⊢ ( 𝜑 → ( ¬ 𝐴 = 𝐵 → 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ) ) |
94 |
91 93
|
mpd |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ) |
95 |
1 12 2 4 5 6 26 7
|
tgellng |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ↔ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ) ) |
96 |
94 95
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
97 |
|
df-3or |
⊢ ( ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ↔ ( ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
98 |
96 97
|
sylib |
⊢ ( 𝜑 → ( ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
99 |
79 90 98
|
mpjaodan |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) |