Step |
Hyp |
Ref |
Expression |
1 |
|
cgracol.p |
|- P = ( Base ` G ) |
2 |
|
cgracol.i |
|- I = ( Itv ` G ) |
3 |
|
cgracol.m |
|- .- = ( dist ` G ) |
4 |
|
cgracol.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
cgracol.a |
|- ( ph -> A e. P ) |
6 |
|
cgracol.b |
|- ( ph -> B e. P ) |
7 |
|
cgracol.c |
|- ( ph -> C e. P ) |
8 |
|
cgracol.d |
|- ( ph -> D e. P ) |
9 |
|
cgracol.e |
|- ( ph -> E e. P ) |
10 |
|
cgracol.f |
|- ( ph -> F e. P ) |
11 |
|
cgracol.1 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
12 |
|
cgracol.l |
|- L = ( LineG ` G ) |
13 |
|
cgracol.2 |
|- ( ph -> ( C e. ( A L B ) \/ A = B ) ) |
14 |
4
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> G e. TarskiG ) |
15 |
5
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> A e. P ) |
16 |
6
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> B e. P ) |
17 |
7
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> C e. P ) |
18 |
8
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> D e. P ) |
19 |
9
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> E e. P ) |
20 |
10
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> F e. P ) |
21 |
11
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
22 |
|
eqid |
|- ( hlG ` G ) = ( hlG ` G ) |
23 |
1 2 22 4 5 6 7 8 9 10 11
|
cgrane2 |
|- ( ph -> B =/= C ) |
24 |
23
|
necomd |
|- ( ph -> C =/= B ) |
25 |
24
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> C =/= B ) |
26 |
1 2 22 4 5 6 7 8 9 10 11
|
cgrane1 |
|- ( ph -> A =/= B ) |
27 |
26
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> A =/= B ) |
28 |
4
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> G e. TarskiG ) |
29 |
5
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> A e. P ) |
30 |
7
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. P ) |
31 |
6
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> B e. P ) |
32 |
|
simpr |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. ( A I B ) ) |
33 |
1 3 2 28 29 30 31 32
|
tgbtwncom |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. ( B I A ) ) |
34 |
33
|
orcd |
|- ( ( ph /\ C e. ( A I B ) ) -> ( C e. ( B I A ) \/ A e. ( B I C ) ) ) |
35 |
25 27 34
|
3jca |
|- ( ( ph /\ C e. ( A I B ) ) -> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) |
36 |
24
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> C =/= B ) |
37 |
26
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> A =/= B ) |
38 |
4
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> G e. TarskiG ) |
39 |
7
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> C e. P ) |
40 |
5
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. P ) |
41 |
6
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> B e. P ) |
42 |
|
simpr |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. ( C I B ) ) |
43 |
1 3 2 38 39 40 41 42
|
tgbtwncom |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. ( B I C ) ) |
44 |
43
|
olcd |
|- ( ( ph /\ A e. ( C I B ) ) -> ( C e. ( B I A ) \/ A e. ( B I C ) ) ) |
45 |
36 37 44
|
3jca |
|- ( ( ph /\ A e. ( C I B ) ) -> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) |
46 |
35 45
|
jaodan |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) |
47 |
1 2 22 7 5 6 4
|
ishlg |
|- ( ph -> ( C ( ( hlG ` G ) ` B ) A <-> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) |
48 |
47
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( C ( ( hlG ` G ) ` B ) A <-> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) |
49 |
46 48
|
mpbird |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> C ( ( hlG ` G ) ` B ) A ) |
50 |
1 2 22 17 15 16 14 49
|
hlcomd |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> A ( ( hlG ` G ) ` B ) C ) |
51 |
1 2 3 14 15 16 17 18 19 20 21 22 50
|
cgrahl |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> D ( ( hlG ` G ) ` E ) F ) |
52 |
1 2 22 18 20 19 14
|
ishlg |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( D ( ( hlG ` G ) ` E ) F <-> ( D =/= E /\ F =/= E /\ ( D e. ( E I F ) \/ F e. ( E I D ) ) ) ) ) |
53 |
51 52
|
mpbid |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( D =/= E /\ F =/= E /\ ( D e. ( E I F ) \/ F e. ( E I D ) ) ) ) |
54 |
53
|
simp3d |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( D e. ( E I F ) \/ F e. ( E I D ) ) ) |
55 |
4
|
adantr |
|- ( ( ph /\ D e. ( E I F ) ) -> G e. TarskiG ) |
56 |
9
|
adantr |
|- ( ( ph /\ D e. ( E I F ) ) -> E e. P ) |
57 |
8
|
adantr |
|- ( ( ph /\ D e. ( E I F ) ) -> D e. P ) |
58 |
10
|
adantr |
|- ( ( ph /\ D e. ( E I F ) ) -> F e. P ) |
59 |
|
simpr |
|- ( ( ph /\ D e. ( E I F ) ) -> D e. ( E I F ) ) |
60 |
1 3 2 55 56 57 58 59
|
tgbtwncom |
|- ( ( ph /\ D e. ( E I F ) ) -> D e. ( F I E ) ) |
61 |
60
|
olcd |
|- ( ( ph /\ D e. ( E I F ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) ) ) |
62 |
4
|
adantr |
|- ( ( ph /\ F e. ( E I D ) ) -> G e. TarskiG ) |
63 |
9
|
adantr |
|- ( ( ph /\ F e. ( E I D ) ) -> E e. P ) |
64 |
10
|
adantr |
|- ( ( ph /\ F e. ( E I D ) ) -> F e. P ) |
65 |
8
|
adantr |
|- ( ( ph /\ F e. ( E I D ) ) -> D e. P ) |
66 |
|
simpr |
|- ( ( ph /\ F e. ( E I D ) ) -> F e. ( E I D ) ) |
67 |
1 3 2 62 63 64 65 66
|
tgbtwncom |
|- ( ( ph /\ F e. ( E I D ) ) -> F e. ( D I E ) ) |
68 |
67
|
orcd |
|- ( ( ph /\ F e. ( E I D ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) ) ) |
69 |
61 68
|
jaodan |
|- ( ( ph /\ ( D e. ( E I F ) \/ F e. ( E I D ) ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) ) ) |
70 |
54 69
|
syldan |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) ) ) |
71 |
70
|
orcd |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( ( F e. ( D I E ) \/ D e. ( F I E ) ) \/ E e. ( D I F ) ) ) |
72 |
|
df-3or |
|- ( ( F e. ( D I E ) \/ D e. ( F I E ) \/ E e. ( D I F ) ) <-> ( ( F e. ( D I E ) \/ D e. ( F I E ) ) \/ E e. ( D I F ) ) ) |
73 |
71 72
|
sylibr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) \/ E e. ( D I F ) ) ) |
74 |
1 2 4 22 5 6 7 8 9 10 11
|
cgracom |
|- ( ph -> <" D E F "> ( cgrA ` G ) <" A B C "> ) |
75 |
1 2 22 4 8 9 10 5 6 7 74
|
cgrane1 |
|- ( ph -> D =/= E ) |
76 |
1 12 2 4 8 9 75 10
|
tgellng |
|- ( ph -> ( F e. ( D L E ) <-> ( F e. ( D I E ) \/ D e. ( F I E ) \/ E e. ( D I F ) ) ) ) |
77 |
76
|
adantr |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( F e. ( D L E ) <-> ( F e. ( D I E ) \/ D e. ( F I E ) \/ E e. ( D I F ) ) ) ) |
78 |
73 77
|
mpbird |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> F e. ( D L E ) ) |
79 |
78
|
orcd |
|- ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( F e. ( D L E ) \/ D = E ) ) |
80 |
4
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> G e. TarskiG ) |
81 |
8
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> D e. P ) |
82 |
9
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> E e. P ) |
83 |
10
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> F e. P ) |
84 |
5
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> A e. P ) |
85 |
6
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. P ) |
86 |
7
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> C e. P ) |
87 |
11
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
88 |
|
simpr |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. ( A I C ) ) |
89 |
1 2 3 80 84 85 86 81 82 83 87 88
|
cgrabtwn |
|- ( ( ph /\ B e. ( A I C ) ) -> E e. ( D I F ) ) |
90 |
1 12 2 80 81 82 83 89
|
btwncolg3 |
|- ( ( ph /\ B e. ( A I C ) ) -> ( F e. ( D L E ) \/ D = E ) ) |
91 |
26
|
neneqd |
|- ( ph -> -. A = B ) |
92 |
13
|
orcomd |
|- ( ph -> ( A = B \/ C e. ( A L B ) ) ) |
93 |
92
|
ord |
|- ( ph -> ( -. A = B -> C e. ( A L B ) ) ) |
94 |
91 93
|
mpd |
|- ( ph -> C e. ( A L B ) ) |
95 |
1 12 2 4 5 6 26 7
|
tgellng |
|- ( ph -> ( C e. ( A L B ) <-> ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) ) ) |
96 |
94 95
|
mpbid |
|- ( ph -> ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) ) |
97 |
|
df-3or |
|- ( ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) <-> ( ( C e. ( A I B ) \/ A e. ( C I B ) ) \/ B e. ( A I C ) ) ) |
98 |
96 97
|
sylib |
|- ( ph -> ( ( C e. ( A I B ) \/ A e. ( C I B ) ) \/ B e. ( A I C ) ) ) |
99 |
79 90 98
|
mpjaodan |
|- ( ph -> ( F e. ( D L E ) \/ D = E ) ) |