| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cgracol.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | cgracol.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | cgracol.m |  |-  .- = ( dist ` G ) | 
						
							| 4 |  | cgracol.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | cgracol.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | cgracol.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | cgracol.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | cgracol.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | cgracol.e |  |-  ( ph -> E e. P ) | 
						
							| 10 |  | cgracol.f |  |-  ( ph -> F e. P ) | 
						
							| 11 |  | cgracol.1 |  |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) | 
						
							| 12 |  | cgracol.l |  |-  L = ( LineG ` G ) | 
						
							| 13 |  | cgracol.2 |  |-  ( ph -> ( C e. ( A L B ) \/ A = B ) ) | 
						
							| 14 | 4 | adantr |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> G e. TarskiG ) | 
						
							| 15 | 5 | adantr |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> A e. P ) | 
						
							| 16 | 6 | adantr |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> B e. P ) | 
						
							| 17 | 7 | adantr |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> C e. P ) | 
						
							| 18 | 8 | adantr |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> D e. P ) | 
						
							| 19 | 9 | adantr |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> E e. P ) | 
						
							| 20 | 10 | adantr |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> F e. P ) | 
						
							| 21 | 11 | adantr |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> <" A B C "> ( cgrA ` G ) <" D E F "> ) | 
						
							| 22 |  | eqid |  |-  ( hlG ` G ) = ( hlG ` G ) | 
						
							| 23 | 1 2 22 4 5 6 7 8 9 10 11 | cgrane2 |  |-  ( ph -> B =/= C ) | 
						
							| 24 | 23 | necomd |  |-  ( ph -> C =/= B ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ C e. ( A I B ) ) -> C =/= B ) | 
						
							| 26 | 1 2 22 4 5 6 7 8 9 10 11 | cgrane1 |  |-  ( ph -> A =/= B ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ C e. ( A I B ) ) -> A =/= B ) | 
						
							| 28 | 4 | adantr |  |-  ( ( ph /\ C e. ( A I B ) ) -> G e. TarskiG ) | 
						
							| 29 | 5 | adantr |  |-  ( ( ph /\ C e. ( A I B ) ) -> A e. P ) | 
						
							| 30 | 7 | adantr |  |-  ( ( ph /\ C e. ( A I B ) ) -> C e. P ) | 
						
							| 31 | 6 | adantr |  |-  ( ( ph /\ C e. ( A I B ) ) -> B e. P ) | 
						
							| 32 |  | simpr |  |-  ( ( ph /\ C e. ( A I B ) ) -> C e. ( A I B ) ) | 
						
							| 33 | 1 3 2 28 29 30 31 32 | tgbtwncom |  |-  ( ( ph /\ C e. ( A I B ) ) -> C e. ( B I A ) ) | 
						
							| 34 | 33 | orcd |  |-  ( ( ph /\ C e. ( A I B ) ) -> ( C e. ( B I A ) \/ A e. ( B I C ) ) ) | 
						
							| 35 | 25 27 34 | 3jca |  |-  ( ( ph /\ C e. ( A I B ) ) -> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) | 
						
							| 36 | 24 | adantr |  |-  ( ( ph /\ A e. ( C I B ) ) -> C =/= B ) | 
						
							| 37 | 26 | adantr |  |-  ( ( ph /\ A e. ( C I B ) ) -> A =/= B ) | 
						
							| 38 | 4 | adantr |  |-  ( ( ph /\ A e. ( C I B ) ) -> G e. TarskiG ) | 
						
							| 39 | 7 | adantr |  |-  ( ( ph /\ A e. ( C I B ) ) -> C e. P ) | 
						
							| 40 | 5 | adantr |  |-  ( ( ph /\ A e. ( C I B ) ) -> A e. P ) | 
						
							| 41 | 6 | adantr |  |-  ( ( ph /\ A e. ( C I B ) ) -> B e. P ) | 
						
							| 42 |  | simpr |  |-  ( ( ph /\ A e. ( C I B ) ) -> A e. ( C I B ) ) | 
						
							| 43 | 1 3 2 38 39 40 41 42 | tgbtwncom |  |-  ( ( ph /\ A e. ( C I B ) ) -> A e. ( B I C ) ) | 
						
							| 44 | 43 | olcd |  |-  ( ( ph /\ A e. ( C I B ) ) -> ( C e. ( B I A ) \/ A e. ( B I C ) ) ) | 
						
							| 45 | 36 37 44 | 3jca |  |-  ( ( ph /\ A e. ( C I B ) ) -> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) | 
						
							| 46 | 35 45 | jaodan |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) | 
						
							| 47 | 1 2 22 7 5 6 4 | ishlg |  |-  ( ph -> ( C ( ( hlG ` G ) ` B ) A <-> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( C ( ( hlG ` G ) ` B ) A <-> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) | 
						
							| 49 | 46 48 | mpbird |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> C ( ( hlG ` G ) ` B ) A ) | 
						
							| 50 | 1 2 22 17 15 16 14 49 | hlcomd |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> A ( ( hlG ` G ) ` B ) C ) | 
						
							| 51 | 1 2 3 14 15 16 17 18 19 20 21 22 50 | cgrahl |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> D ( ( hlG ` G ) ` E ) F ) | 
						
							| 52 | 1 2 22 18 20 19 14 | ishlg |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( D ( ( hlG ` G ) ` E ) F <-> ( D =/= E /\ F =/= E /\ ( D e. ( E I F ) \/ F e. ( E I D ) ) ) ) ) | 
						
							| 53 | 51 52 | mpbid |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( D =/= E /\ F =/= E /\ ( D e. ( E I F ) \/ F e. ( E I D ) ) ) ) | 
						
							| 54 | 53 | simp3d |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( D e. ( E I F ) \/ F e. ( E I D ) ) ) | 
						
							| 55 | 4 | adantr |  |-  ( ( ph /\ D e. ( E I F ) ) -> G e. TarskiG ) | 
						
							| 56 | 9 | adantr |  |-  ( ( ph /\ D e. ( E I F ) ) -> E e. P ) | 
						
							| 57 | 8 | adantr |  |-  ( ( ph /\ D e. ( E I F ) ) -> D e. P ) | 
						
							| 58 | 10 | adantr |  |-  ( ( ph /\ D e. ( E I F ) ) -> F e. P ) | 
						
							| 59 |  | simpr |  |-  ( ( ph /\ D e. ( E I F ) ) -> D e. ( E I F ) ) | 
						
							| 60 | 1 3 2 55 56 57 58 59 | tgbtwncom |  |-  ( ( ph /\ D e. ( E I F ) ) -> D e. ( F I E ) ) | 
						
							| 61 | 60 | olcd |  |-  ( ( ph /\ D e. ( E I F ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) ) ) | 
						
							| 62 | 4 | adantr |  |-  ( ( ph /\ F e. ( E I D ) ) -> G e. TarskiG ) | 
						
							| 63 | 9 | adantr |  |-  ( ( ph /\ F e. ( E I D ) ) -> E e. P ) | 
						
							| 64 | 10 | adantr |  |-  ( ( ph /\ F e. ( E I D ) ) -> F e. P ) | 
						
							| 65 | 8 | adantr |  |-  ( ( ph /\ F e. ( E I D ) ) -> D e. P ) | 
						
							| 66 |  | simpr |  |-  ( ( ph /\ F e. ( E I D ) ) -> F e. ( E I D ) ) | 
						
							| 67 | 1 3 2 62 63 64 65 66 | tgbtwncom |  |-  ( ( ph /\ F e. ( E I D ) ) -> F e. ( D I E ) ) | 
						
							| 68 | 67 | orcd |  |-  ( ( ph /\ F e. ( E I D ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) ) ) | 
						
							| 69 | 61 68 | jaodan |  |-  ( ( ph /\ ( D e. ( E I F ) \/ F e. ( E I D ) ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) ) ) | 
						
							| 70 | 54 69 | syldan |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) ) ) | 
						
							| 71 | 70 | orcd |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( ( F e. ( D I E ) \/ D e. ( F I E ) ) \/ E e. ( D I F ) ) ) | 
						
							| 72 |  | df-3or |  |-  ( ( F e. ( D I E ) \/ D e. ( F I E ) \/ E e. ( D I F ) ) <-> ( ( F e. ( D I E ) \/ D e. ( F I E ) ) \/ E e. ( D I F ) ) ) | 
						
							| 73 | 71 72 | sylibr |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( F e. ( D I E ) \/ D e. ( F I E ) \/ E e. ( D I F ) ) ) | 
						
							| 74 | 1 2 4 22 5 6 7 8 9 10 11 | cgracom |  |-  ( ph -> <" D E F "> ( cgrA ` G ) <" A B C "> ) | 
						
							| 75 | 1 2 22 4 8 9 10 5 6 7 74 | cgrane1 |  |-  ( ph -> D =/= E ) | 
						
							| 76 | 1 12 2 4 8 9 75 10 | tgellng |  |-  ( ph -> ( F e. ( D L E ) <-> ( F e. ( D I E ) \/ D e. ( F I E ) \/ E e. ( D I F ) ) ) ) | 
						
							| 77 | 76 | adantr |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( F e. ( D L E ) <-> ( F e. ( D I E ) \/ D e. ( F I E ) \/ E e. ( D I F ) ) ) ) | 
						
							| 78 | 73 77 | mpbird |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> F e. ( D L E ) ) | 
						
							| 79 | 78 | orcd |  |-  ( ( ph /\ ( C e. ( A I B ) \/ A e. ( C I B ) ) ) -> ( F e. ( D L E ) \/ D = E ) ) | 
						
							| 80 | 4 | adantr |  |-  ( ( ph /\ B e. ( A I C ) ) -> G e. TarskiG ) | 
						
							| 81 | 8 | adantr |  |-  ( ( ph /\ B e. ( A I C ) ) -> D e. P ) | 
						
							| 82 | 9 | adantr |  |-  ( ( ph /\ B e. ( A I C ) ) -> E e. P ) | 
						
							| 83 | 10 | adantr |  |-  ( ( ph /\ B e. ( A I C ) ) -> F e. P ) | 
						
							| 84 | 5 | adantr |  |-  ( ( ph /\ B e. ( A I C ) ) -> A e. P ) | 
						
							| 85 | 6 | adantr |  |-  ( ( ph /\ B e. ( A I C ) ) -> B e. P ) | 
						
							| 86 | 7 | adantr |  |-  ( ( ph /\ B e. ( A I C ) ) -> C e. P ) | 
						
							| 87 | 11 | adantr |  |-  ( ( ph /\ B e. ( A I C ) ) -> <" A B C "> ( cgrA ` G ) <" D E F "> ) | 
						
							| 88 |  | simpr |  |-  ( ( ph /\ B e. ( A I C ) ) -> B e. ( A I C ) ) | 
						
							| 89 | 1 2 3 80 84 85 86 81 82 83 87 88 | cgrabtwn |  |-  ( ( ph /\ B e. ( A I C ) ) -> E e. ( D I F ) ) | 
						
							| 90 | 1 12 2 80 81 82 83 89 | btwncolg3 |  |-  ( ( ph /\ B e. ( A I C ) ) -> ( F e. ( D L E ) \/ D = E ) ) | 
						
							| 91 | 26 | neneqd |  |-  ( ph -> -. A = B ) | 
						
							| 92 | 13 | orcomd |  |-  ( ph -> ( A = B \/ C e. ( A L B ) ) ) | 
						
							| 93 | 92 | ord |  |-  ( ph -> ( -. A = B -> C e. ( A L B ) ) ) | 
						
							| 94 | 91 93 | mpd |  |-  ( ph -> C e. ( A L B ) ) | 
						
							| 95 | 1 12 2 4 5 6 26 7 | tgellng |  |-  ( ph -> ( C e. ( A L B ) <-> ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) ) ) | 
						
							| 96 | 94 95 | mpbid |  |-  ( ph -> ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) ) | 
						
							| 97 |  | df-3or |  |-  ( ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) <-> ( ( C e. ( A I B ) \/ A e. ( C I B ) ) \/ B e. ( A I C ) ) ) | 
						
							| 98 | 96 97 | sylib |  |-  ( ph -> ( ( C e. ( A I B ) \/ A e. ( C I B ) ) \/ B e. ( A I C ) ) ) | 
						
							| 99 | 79 90 98 | mpjaodan |  |-  ( ph -> ( F e. ( D L E ) \/ D = E ) ) |