| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cgracol.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | cgracol.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | cgracol.m |  |-  .- = ( dist ` G ) | 
						
							| 4 |  | cgracol.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | cgracol.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | cgracol.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | cgracol.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | cgracol.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | cgracol.e |  |-  ( ph -> E e. P ) | 
						
							| 10 |  | cgracol.f |  |-  ( ph -> F e. P ) | 
						
							| 11 |  | cgracol.1 |  |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) | 
						
							| 12 |  | cgrahl.k |  |-  K = ( hlG ` G ) | 
						
							| 13 |  | cgrahl.2 |  |-  ( ph -> A ( K ` B ) C ) | 
						
							| 14 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> D e. P ) | 
						
							| 15 |  | simplr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y e. P ) | 
						
							| 16 | 10 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> F e. P ) | 
						
							| 17 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> G e. TarskiG ) | 
						
							| 18 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> E e. P ) | 
						
							| 19 |  | simpllr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> x e. P ) | 
						
							| 20 |  | simpr2 |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> x ( K ` E ) D ) | 
						
							| 21 | 1 2 12 19 14 18 17 20 | hlcomd |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> D ( K ` E ) x ) | 
						
							| 22 | 1 2 12 19 14 18 17 20 | hlne1 |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> x =/= E ) | 
						
							| 23 |  | simpr3 |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y ( K ` E ) F ) | 
						
							| 24 | 1 2 12 15 16 18 17 23 | hlne1 |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> y =/= E ) | 
						
							| 25 |  | eqid |  |-  ( cgrG ` G ) = ( cgrG ` G ) | 
						
							| 26 | 17 | adantr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> G e. TarskiG ) | 
						
							| 27 | 6 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> B e. P ) | 
						
							| 28 | 5 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> A e. P ) | 
						
							| 29 | 7 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> C e. P ) | 
						
							| 30 | 18 | adantr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> E e. P ) | 
						
							| 31 | 19 | adantr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> x e. P ) | 
						
							| 32 |  | simpllr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> y e. P ) | 
						
							| 33 |  | simplr1 |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> <" A B C "> ( cgrG ` G ) <" x E y "> ) | 
						
							| 34 | 1 3 2 25 26 28 27 29 31 30 32 33 | cgr3swap12 |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> <" B A C "> ( cgrG ` G ) <" E x y "> ) | 
						
							| 35 |  | simpr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> A e. ( B I C ) ) | 
						
							| 36 | 1 3 2 25 26 27 28 29 30 31 32 34 35 | tgbtwnxfr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> x e. ( E I y ) ) | 
						
							| 37 | 36 | orcd |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ A e. ( B I C ) ) -> ( x e. ( E I y ) \/ y e. ( E I x ) ) ) | 
						
							| 38 | 4 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> G e. TarskiG ) | 
						
							| 39 | 6 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> B e. P ) | 
						
							| 40 | 7 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> C e. P ) | 
						
							| 41 | 5 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> A e. P ) | 
						
							| 42 | 9 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> E e. P ) | 
						
							| 43 |  | simpllr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> y e. P ) | 
						
							| 44 | 19 | adantr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> x e. P ) | 
						
							| 45 |  | simplr1 |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> <" A B C "> ( cgrG ` G ) <" x E y "> ) | 
						
							| 46 | 1 3 2 25 38 41 39 40 44 42 43 45 | cgr3rotl |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> <" B C A "> ( cgrG ` G ) <" E y x "> ) | 
						
							| 47 |  | simpr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> C e. ( B I A ) ) | 
						
							| 48 | 1 3 2 25 38 39 40 41 42 43 44 46 47 | tgbtwnxfr |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> y e. ( E I x ) ) | 
						
							| 49 | 48 | olcd |  |-  ( ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) /\ C e. ( B I A ) ) -> ( x e. ( E I y ) \/ y e. ( E I x ) ) ) | 
						
							| 50 | 1 2 12 5 7 6 4 | ishlg |  |-  ( ph -> ( A ( K ` B ) C <-> ( A =/= B /\ C =/= B /\ ( A e. ( B I C ) \/ C e. ( B I A ) ) ) ) ) | 
						
							| 51 | 13 50 | mpbid |  |-  ( ph -> ( A =/= B /\ C =/= B /\ ( A e. ( B I C ) \/ C e. ( B I A ) ) ) ) | 
						
							| 52 | 51 | simp3d |  |-  ( ph -> ( A e. ( B I C ) \/ C e. ( B I A ) ) ) | 
						
							| 53 | 52 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( A e. ( B I C ) \/ C e. ( B I A ) ) ) | 
						
							| 54 | 37 49 53 | mpjaodan |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( x e. ( E I y ) \/ y e. ( E I x ) ) ) | 
						
							| 55 | 1 2 12 19 15 18 17 | ishlg |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> ( x ( K ` E ) y <-> ( x =/= E /\ y =/= E /\ ( x e. ( E I y ) \/ y e. ( E I x ) ) ) ) ) | 
						
							| 56 | 22 24 54 55 | mpbir3and |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> x ( K ` E ) y ) | 
						
							| 57 | 1 2 12 14 19 15 17 18 21 56 | hltr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> D ( K ` E ) y ) | 
						
							| 58 | 1 2 12 14 15 16 17 18 57 23 | hltr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) -> D ( K ` E ) F ) | 
						
							| 59 | 1 2 12 4 5 6 7 8 9 10 | iscgra |  |-  ( ph -> ( <" A B C "> ( cgrA ` G ) <" D E F "> <-> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) ) | 
						
							| 60 | 11 59 | mpbid |  |-  ( ph -> E. x e. P E. y e. P ( <" A B C "> ( cgrG ` G ) <" x E y "> /\ x ( K ` E ) D /\ y ( K ` E ) F ) ) | 
						
							| 61 | 58 60 | r19.29vva |  |-  ( ph -> D ( K ` E ) F ) |