| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpgid.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hpgid.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | hpgid.l |  |-  L = ( LineG ` G ) | 
						
							| 4 |  | hpgid.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | hpgid.d |  |-  ( ph -> D e. ran L ) | 
						
							| 6 |  | hpgid.a |  |-  ( ph -> A e. P ) | 
						
							| 7 |  | hpgid.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 8 |  | hpgcom.b |  |-  ( ph -> B e. P ) | 
						
							| 9 |  | hpgcom.1 |  |-  ( ph -> A ( ( hpG ` G ) ` D ) B ) | 
						
							| 10 |  | ancom |  |-  ( ( A O c /\ B O c ) <-> ( B O c /\ A O c ) ) | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ( ( A O c /\ B O c ) <-> ( B O c /\ A O c ) ) ) | 
						
							| 12 | 11 | rexbidv |  |-  ( ph -> ( E. c e. P ( A O c /\ B O c ) <-> E. c e. P ( B O c /\ A O c ) ) ) | 
						
							| 13 | 1 2 3 7 4 5 6 8 | hpgbr |  |-  ( ph -> ( A ( ( hpG ` G ) ` D ) B <-> E. c e. P ( A O c /\ B O c ) ) ) | 
						
							| 14 | 1 2 3 7 4 5 8 6 | hpgbr |  |-  ( ph -> ( B ( ( hpG ` G ) ` D ) A <-> E. c e. P ( B O c /\ A O c ) ) ) | 
						
							| 15 | 12 13 14 | 3bitr4d |  |-  ( ph -> ( A ( ( hpG ` G ) ` D ) B <-> B ( ( hpG ` G ) ` D ) A ) ) | 
						
							| 16 | 9 15 | mpbid |  |-  ( ph -> B ( ( hpG ` G ) ` D ) A ) |