Step |
Hyp |
Ref |
Expression |
1 |
|
ishpg.p |
|- P = ( Base ` G ) |
2 |
|
ishpg.i |
|- I = ( Itv ` G ) |
3 |
|
ishpg.l |
|- L = ( LineG ` G ) |
4 |
|
ishpg.o |
|- O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } |
5 |
|
ishpg.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
ishpg.d |
|- ( ph -> D e. ran L ) |
7 |
|
hpgbr.a |
|- ( ph -> A e. P ) |
8 |
|
hpgbr.b |
|- ( ph -> B e. P ) |
9 |
1 2 3 4 5 6
|
ishpg |
|- ( ph -> ( ( hpG ` G ) ` D ) = { <. a , b >. | E. c e. P ( a O c /\ b O c ) } ) |
10 |
|
simpl |
|- ( ( a = u /\ b = v ) -> a = u ) |
11 |
10
|
breq1d |
|- ( ( a = u /\ b = v ) -> ( a O c <-> u O c ) ) |
12 |
|
simpr |
|- ( ( a = u /\ b = v ) -> b = v ) |
13 |
12
|
breq1d |
|- ( ( a = u /\ b = v ) -> ( b O c <-> v O c ) ) |
14 |
11 13
|
anbi12d |
|- ( ( a = u /\ b = v ) -> ( ( a O c /\ b O c ) <-> ( u O c /\ v O c ) ) ) |
15 |
14
|
rexbidv |
|- ( ( a = u /\ b = v ) -> ( E. c e. P ( a O c /\ b O c ) <-> E. c e. P ( u O c /\ v O c ) ) ) |
16 |
15
|
cbvopabv |
|- { <. a , b >. | E. c e. P ( a O c /\ b O c ) } = { <. u , v >. | E. c e. P ( u O c /\ v O c ) } |
17 |
9 16
|
eqtrdi |
|- ( ph -> ( ( hpG ` G ) ` D ) = { <. u , v >. | E. c e. P ( u O c /\ v O c ) } ) |
18 |
17
|
breqd |
|- ( ph -> ( A ( ( hpG ` G ) ` D ) B <-> A { <. u , v >. | E. c e. P ( u O c /\ v O c ) } B ) ) |
19 |
|
simpl |
|- ( ( u = A /\ v = B ) -> u = A ) |
20 |
19
|
breq1d |
|- ( ( u = A /\ v = B ) -> ( u O c <-> A O c ) ) |
21 |
|
simpr |
|- ( ( u = A /\ v = B ) -> v = B ) |
22 |
21
|
breq1d |
|- ( ( u = A /\ v = B ) -> ( v O c <-> B O c ) ) |
23 |
20 22
|
anbi12d |
|- ( ( u = A /\ v = B ) -> ( ( u O c /\ v O c ) <-> ( A O c /\ B O c ) ) ) |
24 |
23
|
rexbidv |
|- ( ( u = A /\ v = B ) -> ( E. c e. P ( u O c /\ v O c ) <-> E. c e. P ( A O c /\ B O c ) ) ) |
25 |
|
eqid |
|- { <. u , v >. | E. c e. P ( u O c /\ v O c ) } = { <. u , v >. | E. c e. P ( u O c /\ v O c ) } |
26 |
24 25
|
brabga |
|- ( ( A e. P /\ B e. P ) -> ( A { <. u , v >. | E. c e. P ( u O c /\ v O c ) } B <-> E. c e. P ( A O c /\ B O c ) ) ) |
27 |
7 8 26
|
syl2anc |
|- ( ph -> ( A { <. u , v >. | E. c e. P ( u O c /\ v O c ) } B <-> E. c e. P ( A O c /\ B O c ) ) ) |
28 |
18 27
|
bitrd |
|- ( ph -> ( A ( ( hpG ` G ) ` D ) B <-> E. c e. P ( A O c /\ B O c ) ) ) |