| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishpg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ishpg.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | ishpg.l |  |-  L = ( LineG ` G ) | 
						
							| 4 |  | ishpg.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 5 |  | ishpg.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | ishpg.d |  |-  ( ph -> D e. ran L ) | 
						
							| 7 |  | hpgbr.a |  |-  ( ph -> A e. P ) | 
						
							| 8 |  | hpgbr.b |  |-  ( ph -> B e. P ) | 
						
							| 9 | 1 2 3 4 5 6 | ishpg |  |-  ( ph -> ( ( hpG ` G ) ` D ) = { <. a , b >. | E. c e. P ( a O c /\ b O c ) } ) | 
						
							| 10 |  | simpl |  |-  ( ( a = u /\ b = v ) -> a = u ) | 
						
							| 11 | 10 | breq1d |  |-  ( ( a = u /\ b = v ) -> ( a O c <-> u O c ) ) | 
						
							| 12 |  | simpr |  |-  ( ( a = u /\ b = v ) -> b = v ) | 
						
							| 13 | 12 | breq1d |  |-  ( ( a = u /\ b = v ) -> ( b O c <-> v O c ) ) | 
						
							| 14 | 11 13 | anbi12d |  |-  ( ( a = u /\ b = v ) -> ( ( a O c /\ b O c ) <-> ( u O c /\ v O c ) ) ) | 
						
							| 15 | 14 | rexbidv |  |-  ( ( a = u /\ b = v ) -> ( E. c e. P ( a O c /\ b O c ) <-> E. c e. P ( u O c /\ v O c ) ) ) | 
						
							| 16 | 15 | cbvopabv |  |-  { <. a , b >. | E. c e. P ( a O c /\ b O c ) } = { <. u , v >. | E. c e. P ( u O c /\ v O c ) } | 
						
							| 17 | 9 16 | eqtrdi |  |-  ( ph -> ( ( hpG ` G ) ` D ) = { <. u , v >. | E. c e. P ( u O c /\ v O c ) } ) | 
						
							| 18 | 17 | breqd |  |-  ( ph -> ( A ( ( hpG ` G ) ` D ) B <-> A { <. u , v >. | E. c e. P ( u O c /\ v O c ) } B ) ) | 
						
							| 19 |  | simpl |  |-  ( ( u = A /\ v = B ) -> u = A ) | 
						
							| 20 | 19 | breq1d |  |-  ( ( u = A /\ v = B ) -> ( u O c <-> A O c ) ) | 
						
							| 21 |  | simpr |  |-  ( ( u = A /\ v = B ) -> v = B ) | 
						
							| 22 | 21 | breq1d |  |-  ( ( u = A /\ v = B ) -> ( v O c <-> B O c ) ) | 
						
							| 23 | 20 22 | anbi12d |  |-  ( ( u = A /\ v = B ) -> ( ( u O c /\ v O c ) <-> ( A O c /\ B O c ) ) ) | 
						
							| 24 | 23 | rexbidv |  |-  ( ( u = A /\ v = B ) -> ( E. c e. P ( u O c /\ v O c ) <-> E. c e. P ( A O c /\ B O c ) ) ) | 
						
							| 25 |  | eqid |  |-  { <. u , v >. | E. c e. P ( u O c /\ v O c ) } = { <. u , v >. | E. c e. P ( u O c /\ v O c ) } | 
						
							| 26 | 24 25 | brabga |  |-  ( ( A e. P /\ B e. P ) -> ( A { <. u , v >. | E. c e. P ( u O c /\ v O c ) } B <-> E. c e. P ( A O c /\ B O c ) ) ) | 
						
							| 27 | 7 8 26 | syl2anc |  |-  ( ph -> ( A { <. u , v >. | E. c e. P ( u O c /\ v O c ) } B <-> E. c e. P ( A O c /\ B O c ) ) ) | 
						
							| 28 | 18 27 | bitrd |  |-  ( ph -> ( A ( ( hpG ` G ) ` D ) B <-> E. c e. P ( A O c /\ B O c ) ) ) |