| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishpg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ishpg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | ishpg.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 4 |  | ishpg.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 5 |  | ishpg.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 6 |  | ishpg.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 7 |  | hpgbr.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 8 |  | hpgbr.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 9 | 1 2 3 4 5 6 | ishpg | ⊢ ( 𝜑  →  ( ( hpG ‘ 𝐺 ) ‘ 𝐷 )  =  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( 𝑎 𝑂 𝑐  ∧  𝑏 𝑂 𝑐 ) } ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  𝑎  =  𝑢 ) | 
						
							| 11 | 10 | breq1d | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  ( 𝑎 𝑂 𝑐  ↔  𝑢 𝑂 𝑐 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  𝑏  =  𝑣 ) | 
						
							| 13 | 12 | breq1d | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  ( 𝑏 𝑂 𝑐  ↔  𝑣 𝑂 𝑐 ) ) | 
						
							| 14 | 11 13 | anbi12d | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  ( ( 𝑎 𝑂 𝑐  ∧  𝑏 𝑂 𝑐 )  ↔  ( 𝑢 𝑂 𝑐  ∧  𝑣 𝑂 𝑐 ) ) ) | 
						
							| 15 | 14 | rexbidv | ⊢ ( ( 𝑎  =  𝑢  ∧  𝑏  =  𝑣 )  →  ( ∃ 𝑐  ∈  𝑃 ( 𝑎 𝑂 𝑐  ∧  𝑏 𝑂 𝑐 )  ↔  ∃ 𝑐  ∈  𝑃 ( 𝑢 𝑂 𝑐  ∧  𝑣 𝑂 𝑐 ) ) ) | 
						
							| 16 | 15 | cbvopabv | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( 𝑎 𝑂 𝑐  ∧  𝑏 𝑂 𝑐 ) }  =  { 〈 𝑢 ,  𝑣 〉  ∣  ∃ 𝑐  ∈  𝑃 ( 𝑢 𝑂 𝑐  ∧  𝑣 𝑂 𝑐 ) } | 
						
							| 17 | 9 16 | eqtrdi | ⊢ ( 𝜑  →  ( ( hpG ‘ 𝐺 ) ‘ 𝐷 )  =  { 〈 𝑢 ,  𝑣 〉  ∣  ∃ 𝑐  ∈  𝑃 ( 𝑢 𝑂 𝑐  ∧  𝑣 𝑂 𝑐 ) } ) | 
						
							| 18 | 17 | breqd | ⊢ ( 𝜑  →  ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵  ↔  𝐴 { 〈 𝑢 ,  𝑣 〉  ∣  ∃ 𝑐  ∈  𝑃 ( 𝑢 𝑂 𝑐  ∧  𝑣 𝑂 𝑐 ) } 𝐵 ) ) | 
						
							| 19 |  | simpl | ⊢ ( ( 𝑢  =  𝐴  ∧  𝑣  =  𝐵 )  →  𝑢  =  𝐴 ) | 
						
							| 20 | 19 | breq1d | ⊢ ( ( 𝑢  =  𝐴  ∧  𝑣  =  𝐵 )  →  ( 𝑢 𝑂 𝑐  ↔  𝐴 𝑂 𝑐 ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝑢  =  𝐴  ∧  𝑣  =  𝐵 )  →  𝑣  =  𝐵 ) | 
						
							| 22 | 21 | breq1d | ⊢ ( ( 𝑢  =  𝐴  ∧  𝑣  =  𝐵 )  →  ( 𝑣 𝑂 𝑐  ↔  𝐵 𝑂 𝑐 ) ) | 
						
							| 23 | 20 22 | anbi12d | ⊢ ( ( 𝑢  =  𝐴  ∧  𝑣  =  𝐵 )  →  ( ( 𝑢 𝑂 𝑐  ∧  𝑣 𝑂 𝑐 )  ↔  ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 ) ) ) | 
						
							| 24 | 23 | rexbidv | ⊢ ( ( 𝑢  =  𝐴  ∧  𝑣  =  𝐵 )  →  ( ∃ 𝑐  ∈  𝑃 ( 𝑢 𝑂 𝑐  ∧  𝑣 𝑂 𝑐 )  ↔  ∃ 𝑐  ∈  𝑃 ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 ) ) ) | 
						
							| 25 |  | eqid | ⊢ { 〈 𝑢 ,  𝑣 〉  ∣  ∃ 𝑐  ∈  𝑃 ( 𝑢 𝑂 𝑐  ∧  𝑣 𝑂 𝑐 ) }  =  { 〈 𝑢 ,  𝑣 〉  ∣  ∃ 𝑐  ∈  𝑃 ( 𝑢 𝑂 𝑐  ∧  𝑣 𝑂 𝑐 ) } | 
						
							| 26 | 24 25 | brabga | ⊢ ( ( 𝐴  ∈  𝑃  ∧  𝐵  ∈  𝑃 )  →  ( 𝐴 { 〈 𝑢 ,  𝑣 〉  ∣  ∃ 𝑐  ∈  𝑃 ( 𝑢 𝑂 𝑐  ∧  𝑣 𝑂 𝑐 ) } 𝐵  ↔  ∃ 𝑐  ∈  𝑃 ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 ) ) ) | 
						
							| 27 | 7 8 26 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 { 〈 𝑢 ,  𝑣 〉  ∣  ∃ 𝑐  ∈  𝑃 ( 𝑢 𝑂 𝑐  ∧  𝑣 𝑂 𝑐 ) } 𝐵  ↔  ∃ 𝑐  ∈  𝑃 ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 ) ) ) | 
						
							| 28 | 18 27 | bitrd | ⊢ ( 𝜑  →  ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵  ↔  ∃ 𝑐  ∈  𝑃 ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 ) ) ) |