Metamath Proof Explorer


Theorem hpgbr

Description: Half-planes : property for points A and B to belong to the same open half plane delimited by line D . Definition 9.7 of Schwabhauser p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishpg.p P=BaseG
ishpg.i I=ItvG
ishpg.l L=Line𝒢G
ishpg.o O=ab|aPDbPDtDtaIb
ishpg.g φG𝒢Tarski
ishpg.d φDranL
hpgbr.a φAP
hpgbr.b φBP
Assertion hpgbr φAhp𝒢GDBcPAOcBOc

Proof

Step Hyp Ref Expression
1 ishpg.p P=BaseG
2 ishpg.i I=ItvG
3 ishpg.l L=Line𝒢G
4 ishpg.o O=ab|aPDbPDtDtaIb
5 ishpg.g φG𝒢Tarski
6 ishpg.d φDranL
7 hpgbr.a φAP
8 hpgbr.b φBP
9 1 2 3 4 5 6 ishpg φhp𝒢GD=ab|cPaOcbOc
10 simpl a=ub=va=u
11 10 breq1d a=ub=vaOcuOc
12 simpr a=ub=vb=v
13 12 breq1d a=ub=vbOcvOc
14 11 13 anbi12d a=ub=vaOcbOcuOcvOc
15 14 rexbidv a=ub=vcPaOcbOccPuOcvOc
16 15 cbvopabv ab|cPaOcbOc=uv|cPuOcvOc
17 9 16 eqtrdi φhp𝒢GD=uv|cPuOcvOc
18 17 breqd φAhp𝒢GDBAuv|cPuOcvOcB
19 simpl u=Av=Bu=A
20 19 breq1d u=Av=BuOcAOc
21 simpr u=Av=Bv=B
22 21 breq1d u=Av=BvOcBOc
23 20 22 anbi12d u=Av=BuOcvOcAOcBOc
24 23 rexbidv u=Av=BcPuOcvOccPAOcBOc
25 eqid uv|cPuOcvOc=uv|cPuOcvOc
26 24 25 brabga APBPAuv|cPuOcvOcBcPAOcBOc
27 7 8 26 syl2anc φAuv|cPuOcvOcBcPAOcBOc
28 18 27 bitrd φAhp𝒢GDBcPAOcBOc