Metamath Proof Explorer


Theorem ishpg

Description: Value of the half-plane relation for a given line D . (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishpg.p P = Base G
ishpg.i I = Itv G
ishpg.l L = Line 𝒢 G
ishpg.o O = a b | a P D b P D t D t a I b
ishpg.g φ G 𝒢 Tarski
ishpg.d φ D ran L
Assertion ishpg φ hp 𝒢 G D = a b | c P a O c b O c

Proof

Step Hyp Ref Expression
1 ishpg.p P = Base G
2 ishpg.i I = Itv G
3 ishpg.l L = Line 𝒢 G
4 ishpg.o O = a b | a P D b P D t D t a I b
5 ishpg.g φ G 𝒢 Tarski
6 ishpg.d φ D ran L
7 elex G 𝒢 Tarski G V
8 fveq2 g = G Line 𝒢 g = Line 𝒢 G
9 8 3 eqtr4di g = G Line 𝒢 g = L
10 9 rneqd g = G ran Line 𝒢 g = ran L
11 simpl p = P i = I p = P
12 11 eqcomd p = P i = I P = p
13 12 difeq1d p = P i = I P d = p d
14 13 eleq2d p = P i = I a P d a p d
15 13 eleq2d p = P i = I c P d c p d
16 14 15 anbi12d p = P i = I a P d c P d a p d c p d
17 simpr p = P i = I i = I
18 17 eqcomd p = P i = I I = i
19 18 oveqd p = P i = I a I c = a i c
20 19 eleq2d p = P i = I t a I c t a i c
21 20 rexbidv p = P i = I t d t a I c t d t a i c
22 16 21 anbi12d p = P i = I a P d c P d t d t a I c a p d c p d t d t a i c
23 13 eleq2d p = P i = I b P d b p d
24 23 15 anbi12d p = P i = I b P d c P d b p d c p d
25 18 oveqd p = P i = I b I c = b i c
26 25 eleq2d p = P i = I t b I c t b i c
27 26 rexbidv p = P i = I t d t b I c t d t b i c
28 24 27 anbi12d p = P i = I b P d c P d t d t b I c b p d c p d t d t b i c
29 22 28 anbi12d p = P i = I a P d c P d t d t a I c b P d c P d t d t b I c a p d c p d t d t a i c b p d c p d t d t b i c
30 12 29 rexeqbidv p = P i = I c P a P d c P d t d t a I c b P d c P d t d t b I c c p a p d c p d t d t a i c b p d c p d t d t b i c
31 1 2 30 sbcie2s g = G [˙Base g / p]˙ [˙ Itv g / i]˙ c p a p d c p d t d t a i c b p d c p d t d t b i c c P a P d c P d t d t a I c b P d c P d t d t b I c
32 31 opabbidv g = G a b | [˙Base g / p]˙ [˙ Itv g / i]˙ c p a p d c p d t d t a i c b p d c p d t d t b i c = a b | c P a P d c P d t d t a I c b P d c P d t d t b I c
33 10 32 mpteq12dv g = G d ran Line 𝒢 g a b | [˙Base g / p]˙ [˙ Itv g / i]˙ c p a p d c p d t d t a i c b p d c p d t d t b i c = d ran L a b | c P a P d c P d t d t a I c b P d c P d t d t b I c
34 df-hpg hp 𝒢 = g V d ran Line 𝒢 g a b | [˙Base g / p]˙ [˙ Itv g / i]˙ c p a p d c p d t d t a i c b p d c p d t d t b i c
35 3 fvexi L V
36 35 rnex ran L V
37 36 mptex d ran L a b | c P a P d c P d t d t a I c b P d c P d t d t b I c V
38 33 34 37 fvmpt G V hp 𝒢 G = d ran L a b | c P a P d c P d t d t a I c b P d c P d t d t b I c
39 5 7 38 3syl φ hp 𝒢 G = d ran L a b | c P a P d c P d t d t a I c b P d c P d t d t b I c
40 difeq2 d = D P d = P D
41 40 eleq2d d = D a P d a P D
42 40 eleq2d d = D c P d c P D
43 41 42 anbi12d d = D a P d c P d a P D c P D
44 rexeq d = D t d t a I c t D t a I c
45 43 44 anbi12d d = D a P d c P d t d t a I c a P D c P D t D t a I c
46 40 eleq2d d = D b P d b P D
47 46 42 anbi12d d = D b P d c P d b P D c P D
48 rexeq d = D t d t b I c t D t b I c
49 47 48 anbi12d d = D b P d c P d t d t b I c b P D c P D t D t b I c
50 45 49 anbi12d d = D a P d c P d t d t a I c b P d c P d t d t b I c a P D c P D t D t a I c b P D c P D t D t b I c
51 50 rexbidv d = D c P a P d c P d t d t a I c b P d c P d t d t b I c c P a P D c P D t D t a I c b P D c P D t D t b I c
52 51 opabbidv d = D a b | c P a P d c P d t d t a I c b P d c P d t d t b I c = a b | c P a P D c P D t D t a I c b P D c P D t D t b I c
53 52 adantl φ d = D a b | c P a P d c P d t d t a I c b P d c P d t d t b I c = a b | c P a P D c P D t D t a I c b P D c P D t D t b I c
54 df-xp P × P = a b | a P b P
55 1 fvexi P V
56 55 55 xpex P × P V
57 54 56 eqeltrri a b | a P b P V
58 eldifi a P D a P
59 eldifi b P D b P
60 58 59 anim12i a P D b P D a P b P
61 60 ad2ant2r a P D c P D b P D c P D a P b P
62 61 ad2ant2r a P D c P D t D t a I c b P D c P D t D t b I c a P b P
63 62 rexlimivw c P a P D c P D t D t a I c b P D c P D t D t b I c a P b P
64 63 ssopab2i a b | c P a P D c P D t D t a I c b P D c P D t D t b I c a b | a P b P
65 57 64 ssexi a b | c P a P D c P D t D t a I c b P D c P D t D t b I c V
66 65 a1i φ a b | c P a P D c P D t D t a I c b P D c P D t D t b I c V
67 39 53 6 66 fvmptd φ hp 𝒢 G D = a b | c P a P D c P D t D t a I c b P D c P D t D t b I c
68 vex a V
69 vex c V
70 eleq1w e = a e P D a P D
71 70 anbi1d e = a e P D f P D a P D f P D
72 oveq1 e = a e I f = a I f
73 72 eleq2d e = a t e I f t a I f
74 73 rexbidv e = a t D t e I f t D t a I f
75 71 74 anbi12d e = a e P D f P D t D t e I f a P D f P D t D t a I f
76 eleq1w f = c f P D c P D
77 76 anbi2d f = c a P D f P D a P D c P D
78 oveq2 f = c a I f = a I c
79 78 eleq2d f = c t a I f t a I c
80 79 rexbidv f = c t D t a I f t D t a I c
81 77 80 anbi12d f = c a P D f P D t D t a I f a P D c P D t D t a I c
82 simpl a = e b = f a = e
83 82 eleq1d a = e b = f a P D e P D
84 simpr a = e b = f b = f
85 84 eleq1d a = e b = f b P D f P D
86 83 85 anbi12d a = e b = f a P D b P D e P D f P D
87 oveq12 a = e b = f a I b = e I f
88 87 eleq2d a = e b = f t a I b t e I f
89 88 rexbidv a = e b = f t D t a I b t D t e I f
90 86 89 anbi12d a = e b = f a P D b P D t D t a I b e P D f P D t D t e I f
91 90 cbvopabv a b | a P D b P D t D t a I b = e f | e P D f P D t D t e I f
92 4 91 eqtri O = e f | e P D f P D t D t e I f
93 68 69 75 81 92 brab a O c a P D c P D t D t a I c
94 vex b V
95 eleq1w e = b e P D b P D
96 95 anbi1d e = b e P D f P D b P D f P D
97 oveq1 e = b e I f = b I f
98 97 eleq2d e = b t e I f t b I f
99 98 rexbidv e = b t D t e I f t D t b I f
100 96 99 anbi12d e = b e P D f P D t D t e I f b P D f P D t D t b I f
101 76 anbi2d f = c b P D f P D b P D c P D
102 oveq2 f = c b I f = b I c
103 102 eleq2d f = c t b I f t b I c
104 103 rexbidv f = c t D t b I f t D t b I c
105 101 104 anbi12d f = c b P D f P D t D t b I f b P D c P D t D t b I c
106 94 69 100 105 92 brab b O c b P D c P D t D t b I c
107 93 106 anbi12i a O c b O c a P D c P D t D t a I c b P D c P D t D t b I c
108 107 rexbii c P a O c b O c c P a P D c P D t D t a I c b P D c P D t D t b I c
109 108 opabbii a b | c P a O c b O c = a b | c P a P D c P D t D t a I c b P D c P D t D t b I c
110 67 109 eqtr4di φ hp 𝒢 G D = a b | c P a O c b O c