| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishpg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ishpg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | ishpg.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 4 |  | ishpg.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 5 |  | ishpg.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 6 |  | ishpg.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 7 |  | elex | ⊢ ( 𝐺  ∈  TarskiG  →  𝐺  ∈  V ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( LineG ‘ 𝑔 )  =  ( LineG ‘ 𝐺 ) ) | 
						
							| 9 | 8 3 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( LineG ‘ 𝑔 )  =  𝐿 ) | 
						
							| 10 | 9 | rneqd | ⊢ ( 𝑔  =  𝐺  →  ran  ( LineG ‘ 𝑔 )  =  ran  𝐿 ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  𝑝  =  𝑃 ) | 
						
							| 12 | 11 | difeq1d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( 𝑝  ∖  𝑑 )  =  ( 𝑃  ∖  𝑑 ) ) | 
						
							| 13 | 12 | eleq2d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( 𝑎  ∈  ( 𝑝  ∖  𝑑 )  ↔  𝑎  ∈  ( 𝑃  ∖  𝑑 ) ) ) | 
						
							| 14 | 12 | eleq2d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( 𝑐  ∈  ( 𝑝  ∖  𝑑 )  ↔  𝑐  ∈  ( 𝑃  ∖  𝑑 ) ) ) | 
						
							| 15 | 13 14 | anbi12d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( ( 𝑎  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ↔  ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) ) ) ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  𝑖  =  𝐼 ) | 
						
							| 17 | 16 | oveqd | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( 𝑎 𝑖 𝑐 )  =  ( 𝑎 𝐼 𝑐 ) ) | 
						
							| 18 | 17 | eleq2d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( 𝑡  ∈  ( 𝑎 𝑖 𝑐 )  ↔  𝑡  ∈  ( 𝑎 𝐼 𝑐 ) ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝑖 𝑐 )  ↔  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) ) ) | 
						
							| 20 | 15 19 | anbi12d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( ( ( 𝑎  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝑖 𝑐 ) )  ↔  ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) ) ) ) | 
						
							| 21 | 12 | eleq2d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( 𝑏  ∈  ( 𝑝  ∖  𝑑 )  ↔  𝑏  ∈  ( 𝑃  ∖  𝑑 ) ) ) | 
						
							| 22 | 21 14 | anbi12d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( ( 𝑏  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ↔  ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) ) ) ) | 
						
							| 23 | 16 | oveqd | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( 𝑏 𝑖 𝑐 )  =  ( 𝑏 𝐼 𝑐 ) ) | 
						
							| 24 | 23 | eleq2d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( 𝑡  ∈  ( 𝑏 𝑖 𝑐 )  ↔  𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) | 
						
							| 25 | 24 | rexbidv | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝑖 𝑐 )  ↔  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) | 
						
							| 26 | 22 25 | anbi12d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( ( ( 𝑏  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝑖 𝑐 ) )  ↔  ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) ) | 
						
							| 27 | 20 26 | anbi12d | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( ( ( ( 𝑎  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝑖 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝑖 𝑐 ) ) )  ↔  ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) ) ) | 
						
							| 28 | 11 27 | rexeqbidv | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑖  =  𝐼 )  →  ( ∃ 𝑐  ∈  𝑝 ( ( ( 𝑎  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝑖 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝑖 𝑐 ) ) )  ↔  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) ) ) | 
						
							| 29 | 1 2 28 | sbcie2s | ⊢ ( 𝑔  =  𝐺  →  ( [ ( Base ‘ 𝑔 )  /  𝑝 ] [ ( Itv ‘ 𝑔 )  /  𝑖 ] ∃ 𝑐  ∈  𝑝 ( ( ( 𝑎  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝑖 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝑖 𝑐 ) ) )  ↔  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) ) ) | 
						
							| 30 | 29 | opabbidv | ⊢ ( 𝑔  =  𝐺  →  { 〈 𝑎 ,  𝑏 〉  ∣  [ ( Base ‘ 𝑔 )  /  𝑝 ] [ ( Itv ‘ 𝑔 )  /  𝑖 ] ∃ 𝑐  ∈  𝑝 ( ( ( 𝑎  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝑖 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝑖 𝑐 ) ) ) }  =  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) } ) | 
						
							| 31 | 10 30 | mpteq12dv | ⊢ ( 𝑔  =  𝐺  →  ( 𝑑  ∈  ran  ( LineG ‘ 𝑔 )  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  [ ( Base ‘ 𝑔 )  /  𝑝 ] [ ( Itv ‘ 𝑔 )  /  𝑖 ] ∃ 𝑐  ∈  𝑝 ( ( ( 𝑎  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝑖 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝑖 𝑐 ) ) ) } )  =  ( 𝑑  ∈  ran  𝐿  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) } ) ) | 
						
							| 32 |  | df-hpg | ⊢ hpG  =  ( 𝑔  ∈  V  ↦  ( 𝑑  ∈  ran  ( LineG ‘ 𝑔 )  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  [ ( Base ‘ 𝑔 )  /  𝑝 ] [ ( Itv ‘ 𝑔 )  /  𝑖 ] ∃ 𝑐  ∈  𝑝 ( ( ( 𝑎  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝑖 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑝  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑝  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝑖 𝑐 ) ) ) } ) ) | 
						
							| 33 | 3 | fvexi | ⊢ 𝐿  ∈  V | 
						
							| 34 | 33 | rnex | ⊢ ran  𝐿  ∈  V | 
						
							| 35 | 34 | mptex | ⊢ ( 𝑑  ∈  ran  𝐿  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) } )  ∈  V | 
						
							| 36 | 31 32 35 | fvmpt | ⊢ ( 𝐺  ∈  V  →  ( hpG ‘ 𝐺 )  =  ( 𝑑  ∈  ran  𝐿  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) } ) ) | 
						
							| 37 | 5 7 36 | 3syl | ⊢ ( 𝜑  →  ( hpG ‘ 𝐺 )  =  ( 𝑑  ∈  ran  𝐿  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) } ) ) | 
						
							| 38 |  | difeq2 | ⊢ ( 𝑑  =  𝐷  →  ( 𝑃  ∖  𝑑 )  =  ( 𝑃  ∖  𝐷 ) ) | 
						
							| 39 | 38 | eleq2d | ⊢ ( 𝑑  =  𝐷  →  ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ↔  𝑎  ∈  ( 𝑃  ∖  𝐷 ) ) ) | 
						
							| 40 | 38 | eleq2d | ⊢ ( 𝑑  =  𝐷  →  ( 𝑐  ∈  ( 𝑃  ∖  𝑑 )  ↔  𝑐  ∈  ( 𝑃  ∖  𝐷 ) ) ) | 
						
							| 41 | 39 40 | anbi12d | ⊢ ( 𝑑  =  𝐷  →  ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ↔  ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) ) ) ) | 
						
							| 42 |  | rexeq | ⊢ ( 𝑑  =  𝐷  →  ( ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 )  ↔  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) ) ) | 
						
							| 43 | 41 42 | anbi12d | ⊢ ( 𝑑  =  𝐷  →  ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ↔  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) ) ) ) | 
						
							| 44 | 38 | eleq2d | ⊢ ( 𝑑  =  𝐷  →  ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ↔  𝑏  ∈  ( 𝑃  ∖  𝐷 ) ) ) | 
						
							| 45 | 44 40 | anbi12d | ⊢ ( 𝑑  =  𝐷  →  ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ↔  ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) ) ) ) | 
						
							| 46 |  | rexeq | ⊢ ( 𝑑  =  𝐷  →  ( ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 )  ↔  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) | 
						
							| 47 | 45 46 | anbi12d | ⊢ ( 𝑑  =  𝐷  →  ( ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) )  ↔  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) ) | 
						
							| 48 | 43 47 | anbi12d | ⊢ ( 𝑑  =  𝐷  →  ( ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) )  ↔  ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) ) ) | 
						
							| 49 | 48 | rexbidv | ⊢ ( 𝑑  =  𝐷  →  ( ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) )  ↔  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) ) ) | 
						
							| 50 | 49 | opabbidv | ⊢ ( 𝑑  =  𝐷  →  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) }  =  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) } ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝜑  ∧  𝑑  =  𝐷 )  →  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝑑 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝑑 ) )  ∧  ∃ 𝑡  ∈  𝑑 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) }  =  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) } ) | 
						
							| 52 |  | df-xp | ⊢ ( 𝑃  ×  𝑃 )  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) } | 
						
							| 53 | 1 | fvexi | ⊢ 𝑃  ∈  V | 
						
							| 54 | 53 53 | xpex | ⊢ ( 𝑃  ×  𝑃 )  ∈  V | 
						
							| 55 | 52 54 | eqeltrri | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) }  ∈  V | 
						
							| 56 |  | eldifi | ⊢ ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  →  𝑎  ∈  𝑃 ) | 
						
							| 57 |  | eldifi | ⊢ ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  →  𝑏  ∈  𝑃 ) | 
						
							| 58 | 56 57 | anim12i | ⊢ ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  →  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) ) | 
						
							| 59 | 58 | ad2ant2r | ⊢ ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) ) )  →  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) ) | 
						
							| 60 | 59 | ad2ant2r | ⊢ ( ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) )  →  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) ) | 
						
							| 61 | 60 | rexlimivw | ⊢ ( ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) )  →  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) ) | 
						
							| 62 | 61 | ssopab2i | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) }  ⊆  { 〈 𝑎 ,  𝑏 〉  ∣  ( 𝑎  ∈  𝑃  ∧  𝑏  ∈  𝑃 ) } | 
						
							| 63 | 55 62 | ssexi | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) }  ∈  V | 
						
							| 64 | 63 | a1i | ⊢ ( 𝜑  →  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) }  ∈  V ) | 
						
							| 65 | 37 51 6 64 | fvmptd | ⊢ ( 𝜑  →  ( ( hpG ‘ 𝐺 ) ‘ 𝐷 )  =  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) } ) | 
						
							| 66 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 67 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 68 |  | eleq1w | ⊢ ( 𝑒  =  𝑎  →  ( 𝑒  ∈  ( 𝑃  ∖  𝐷 )  ↔  𝑎  ∈  ( 𝑃  ∖  𝐷 ) ) ) | 
						
							| 69 | 68 | anbi1d | ⊢ ( 𝑒  =  𝑎  →  ( ( 𝑒  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) )  ↔  ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) ) ) ) | 
						
							| 70 |  | oveq1 | ⊢ ( 𝑒  =  𝑎  →  ( 𝑒 𝐼 𝑓 )  =  ( 𝑎 𝐼 𝑓 ) ) | 
						
							| 71 | 70 | eleq2d | ⊢ ( 𝑒  =  𝑎  →  ( 𝑡  ∈  ( 𝑒 𝐼 𝑓 )  ↔  𝑡  ∈  ( 𝑎 𝐼 𝑓 ) ) ) | 
						
							| 72 | 71 | rexbidv | ⊢ ( 𝑒  =  𝑎  →  ( ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑒 𝐼 𝑓 )  ↔  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑓 ) ) ) | 
						
							| 73 | 69 72 | anbi12d | ⊢ ( 𝑒  =  𝑎  →  ( ( ( 𝑒  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑒 𝐼 𝑓 ) )  ↔  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑓 ) ) ) ) | 
						
							| 74 |  | eleq1w | ⊢ ( 𝑓  =  𝑐  →  ( 𝑓  ∈  ( 𝑃  ∖  𝐷 )  ↔  𝑐  ∈  ( 𝑃  ∖  𝐷 ) ) ) | 
						
							| 75 | 74 | anbi2d | ⊢ ( 𝑓  =  𝑐  →  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) )  ↔  ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) ) ) ) | 
						
							| 76 |  | oveq2 | ⊢ ( 𝑓  =  𝑐  →  ( 𝑎 𝐼 𝑓 )  =  ( 𝑎 𝐼 𝑐 ) ) | 
						
							| 77 | 76 | eleq2d | ⊢ ( 𝑓  =  𝑐  →  ( 𝑡  ∈  ( 𝑎 𝐼 𝑓 )  ↔  𝑡  ∈  ( 𝑎 𝐼 𝑐 ) ) ) | 
						
							| 78 | 77 | rexbidv | ⊢ ( 𝑓  =  𝑐  →  ( ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑓 )  ↔  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) ) ) | 
						
							| 79 | 75 78 | anbi12d | ⊢ ( 𝑓  =  𝑐  →  ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑓 ) )  ↔  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) ) ) ) | 
						
							| 80 |  | simpl | ⊢ ( ( 𝑎  =  𝑒  ∧  𝑏  =  𝑓 )  →  𝑎  =  𝑒 ) | 
						
							| 81 | 80 | eleq1d | ⊢ ( ( 𝑎  =  𝑒  ∧  𝑏  =  𝑓 )  →  ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ↔  𝑒  ∈  ( 𝑃  ∖  𝐷 ) ) ) | 
						
							| 82 |  | simpr | ⊢ ( ( 𝑎  =  𝑒  ∧  𝑏  =  𝑓 )  →  𝑏  =  𝑓 ) | 
						
							| 83 | 82 | eleq1d | ⊢ ( ( 𝑎  =  𝑒  ∧  𝑏  =  𝑓 )  →  ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ↔  𝑓  ∈  ( 𝑃  ∖  𝐷 ) ) ) | 
						
							| 84 | 81 83 | anbi12d | ⊢ ( ( 𝑎  =  𝑒  ∧  𝑏  =  𝑓 )  →  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ↔  ( 𝑒  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) ) ) ) | 
						
							| 85 |  | oveq12 | ⊢ ( ( 𝑎  =  𝑒  ∧  𝑏  =  𝑓 )  →  ( 𝑎 𝐼 𝑏 )  =  ( 𝑒 𝐼 𝑓 ) ) | 
						
							| 86 | 85 | eleq2d | ⊢ ( ( 𝑎  =  𝑒  ∧  𝑏  =  𝑓 )  →  ( 𝑡  ∈  ( 𝑎 𝐼 𝑏 )  ↔  𝑡  ∈  ( 𝑒 𝐼 𝑓 ) ) ) | 
						
							| 87 | 86 | rexbidv | ⊢ ( ( 𝑎  =  𝑒  ∧  𝑏  =  𝑓 )  →  ( ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 )  ↔  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑒 𝐼 𝑓 ) ) ) | 
						
							| 88 | 84 87 | anbi12d | ⊢ ( ( 𝑎  =  𝑒  ∧  𝑏  =  𝑓 )  →  ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) )  ↔  ( ( 𝑒  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑒 𝐼 𝑓 ) ) ) ) | 
						
							| 89 | 88 | cbvopabv | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) }  =  { 〈 𝑒 ,  𝑓 〉  ∣  ( ( 𝑒  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑒 𝐼 𝑓 ) ) } | 
						
							| 90 | 4 89 | eqtri | ⊢ 𝑂  =  { 〈 𝑒 ,  𝑓 〉  ∣  ( ( 𝑒  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑒 𝐼 𝑓 ) ) } | 
						
							| 91 | 66 67 73 79 90 | brab | ⊢ ( 𝑎 𝑂 𝑐  ↔  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) ) ) | 
						
							| 92 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 93 |  | eleq1w | ⊢ ( 𝑒  =  𝑏  →  ( 𝑒  ∈  ( 𝑃  ∖  𝐷 )  ↔  𝑏  ∈  ( 𝑃  ∖  𝐷 ) ) ) | 
						
							| 94 | 93 | anbi1d | ⊢ ( 𝑒  =  𝑏  →  ( ( 𝑒  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) )  ↔  ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) ) ) ) | 
						
							| 95 |  | oveq1 | ⊢ ( 𝑒  =  𝑏  →  ( 𝑒 𝐼 𝑓 )  =  ( 𝑏 𝐼 𝑓 ) ) | 
						
							| 96 | 95 | eleq2d | ⊢ ( 𝑒  =  𝑏  →  ( 𝑡  ∈  ( 𝑒 𝐼 𝑓 )  ↔  𝑡  ∈  ( 𝑏 𝐼 𝑓 ) ) ) | 
						
							| 97 | 96 | rexbidv | ⊢ ( 𝑒  =  𝑏  →  ( ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑒 𝐼 𝑓 )  ↔  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑓 ) ) ) | 
						
							| 98 | 94 97 | anbi12d | ⊢ ( 𝑒  =  𝑏  →  ( ( ( 𝑒  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑒 𝐼 𝑓 ) )  ↔  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑓 ) ) ) ) | 
						
							| 99 | 74 | anbi2d | ⊢ ( 𝑓  =  𝑐  →  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) )  ↔  ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) ) ) ) | 
						
							| 100 |  | oveq2 | ⊢ ( 𝑓  =  𝑐  →  ( 𝑏 𝐼 𝑓 )  =  ( 𝑏 𝐼 𝑐 ) ) | 
						
							| 101 | 100 | eleq2d | ⊢ ( 𝑓  =  𝑐  →  ( 𝑡  ∈  ( 𝑏 𝐼 𝑓 )  ↔  𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) | 
						
							| 102 | 101 | rexbidv | ⊢ ( 𝑓  =  𝑐  →  ( ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑓 )  ↔  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) | 
						
							| 103 | 99 102 | anbi12d | ⊢ ( 𝑓  =  𝑐  →  ( ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑓  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑓 ) )  ↔  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) ) | 
						
							| 104 | 92 67 98 103 90 | brab | ⊢ ( 𝑏 𝑂 𝑐  ↔  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) | 
						
							| 105 | 91 104 | anbi12i | ⊢ ( ( 𝑎 𝑂 𝑐  ∧  𝑏 𝑂 𝑐 )  ↔  ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) ) | 
						
							| 106 | 105 | rexbii | ⊢ ( ∃ 𝑐  ∈  𝑃 ( 𝑎 𝑂 𝑐  ∧  𝑏 𝑂 𝑐 )  ↔  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) ) | 
						
							| 107 | 106 | opabbii | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( 𝑎 𝑂 𝑐  ∧  𝑏 𝑂 𝑐 ) }  =  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑐 ) )  ∧  ( ( 𝑏  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑐  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑏 𝐼 𝑐 ) ) ) } | 
						
							| 108 | 65 107 | eqtr4di | ⊢ ( 𝜑  →  ( ( hpG ‘ 𝐺 ) ‘ 𝐷 )  =  { 〈 𝑎 ,  𝑏 〉  ∣  ∃ 𝑐  ∈  𝑃 ( 𝑎 𝑂 𝑐  ∧  𝑏 𝑂 𝑐 ) } ) |