Metamath Proof Explorer


Theorem ishpg

Description: Value of the half-plane relation for a given line D . (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishpg.p 𝑃 = ( Base ‘ 𝐺 )
ishpg.i 𝐼 = ( Itv ‘ 𝐺 )
ishpg.l 𝐿 = ( LineG ‘ 𝐺 )
ishpg.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
ishpg.g ( 𝜑𝐺 ∈ TarskiG )
ishpg.d ( 𝜑𝐷 ∈ ran 𝐿 )
Assertion ishpg ( 𝜑 → ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( 𝑎 𝑂 𝑐𝑏 𝑂 𝑐 ) } )

Proof

Step Hyp Ref Expression
1 ishpg.p 𝑃 = ( Base ‘ 𝐺 )
2 ishpg.i 𝐼 = ( Itv ‘ 𝐺 )
3 ishpg.l 𝐿 = ( LineG ‘ 𝐺 )
4 ishpg.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
5 ishpg.g ( 𝜑𝐺 ∈ TarskiG )
6 ishpg.d ( 𝜑𝐷 ∈ ran 𝐿 )
7 elex ( 𝐺 ∈ TarskiG → 𝐺 ∈ V )
8 fveq2 ( 𝑔 = 𝐺 → ( LineG ‘ 𝑔 ) = ( LineG ‘ 𝐺 ) )
9 8 3 eqtr4di ( 𝑔 = 𝐺 → ( LineG ‘ 𝑔 ) = 𝐿 )
10 9 rneqd ( 𝑔 = 𝐺 → ran ( LineG ‘ 𝑔 ) = ran 𝐿 )
11 simpl ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → 𝑝 = 𝑃 )
12 11 eqcomd ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → 𝑃 = 𝑝 )
13 12 difeq1d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑃𝑑 ) = ( 𝑝𝑑 ) )
14 13 eleq2d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑎 ∈ ( 𝑃𝑑 ) ↔ 𝑎 ∈ ( 𝑝𝑑 ) ) )
15 13 eleq2d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑐 ∈ ( 𝑃𝑑 ) ↔ 𝑐 ∈ ( 𝑝𝑑 ) ) )
16 14 15 anbi12d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ↔ ( 𝑎 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ) )
17 simpr ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → 𝑖 = 𝐼 )
18 17 eqcomd ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → 𝐼 = 𝑖 )
19 18 oveqd ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑎 𝐼 𝑐 ) = ( 𝑎 𝑖 𝑐 ) )
20 19 eleq2d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ↔ 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) )
21 20 rexbidv ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ↔ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) )
22 16 21 anbi12d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ↔ ( ( 𝑎 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ) )
23 13 eleq2d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑏 ∈ ( 𝑃𝑑 ) ↔ 𝑏 ∈ ( 𝑝𝑑 ) ) )
24 23 15 anbi12d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ↔ ( 𝑏 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ) )
25 18 oveqd ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑏 𝐼 𝑐 ) = ( 𝑏 𝑖 𝑐 ) )
26 25 eleq2d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ↔ 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) )
27 26 rexbidv ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ↔ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) )
28 24 27 anbi12d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ↔ ( ( 𝑏 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) )
29 22 28 anbi12d ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ( ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ↔ ( ( ( 𝑎 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) ) )
30 12 29 rexeqbidv ( ( 𝑝 = 𝑃𝑖 = 𝐼 ) → ( ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ↔ ∃ 𝑐𝑝 ( ( ( 𝑎 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) ) )
31 1 2 30 sbcie2s ( 𝑔 = 𝐺 → ( [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑐𝑝 ( ( ( 𝑎 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) ↔ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) )
32 31 opabbidv ( 𝑔 = 𝐺 → { ⟨ 𝑎 , 𝑏 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑐𝑝 ( ( ( 𝑎 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } )
33 10 32 mpteq12dv ( 𝑔 = 𝐺 → ( 𝑑 ∈ ran ( LineG ‘ 𝑔 ) ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑐𝑝 ( ( ( 𝑎 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) } ) = ( 𝑑 ∈ ran 𝐿 ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) )
34 df-hpg hpG = ( 𝑔 ∈ V ↦ ( 𝑑 ∈ ran ( LineG ‘ 𝑔 ) ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑐𝑝 ( ( ( 𝑎 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝𝑑 ) ∧ 𝑐 ∈ ( 𝑝𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) } ) )
35 3 fvexi 𝐿 ∈ V
36 35 rnex ran 𝐿 ∈ V
37 36 mptex ( 𝑑 ∈ ran 𝐿 ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) ∈ V
38 33 34 37 fvmpt ( 𝐺 ∈ V → ( hpG ‘ 𝐺 ) = ( 𝑑 ∈ ran 𝐿 ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) )
39 5 7 38 3syl ( 𝜑 → ( hpG ‘ 𝐺 ) = ( 𝑑 ∈ ran 𝐿 ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ) )
40 difeq2 ( 𝑑 = 𝐷 → ( 𝑃𝑑 ) = ( 𝑃𝐷 ) )
41 40 eleq2d ( 𝑑 = 𝐷 → ( 𝑎 ∈ ( 𝑃𝑑 ) ↔ 𝑎 ∈ ( 𝑃𝐷 ) ) )
42 40 eleq2d ( 𝑑 = 𝐷 → ( 𝑐 ∈ ( 𝑃𝑑 ) ↔ 𝑐 ∈ ( 𝑃𝐷 ) ) )
43 41 42 anbi12d ( 𝑑 = 𝐷 → ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ↔ ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ) )
44 rexeq ( 𝑑 = 𝐷 → ( ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ↔ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) )
45 43 44 anbi12d ( 𝑑 = 𝐷 → ( ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ↔ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) )
46 40 eleq2d ( 𝑑 = 𝐷 → ( 𝑏 ∈ ( 𝑃𝑑 ) ↔ 𝑏 ∈ ( 𝑃𝐷 ) ) )
47 46 42 anbi12d ( 𝑑 = 𝐷 → ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ↔ ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ) )
48 rexeq ( 𝑑 = 𝐷 → ( ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ↔ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) )
49 47 48 anbi12d ( 𝑑 = 𝐷 → ( ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ↔ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) )
50 45 49 anbi12d ( 𝑑 = 𝐷 → ( ( ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ↔ ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) )
51 50 rexbidv ( 𝑑 = 𝐷 → ( ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ↔ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) ) )
52 51 opabbidv ( 𝑑 = 𝐷 → { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } )
53 52 adantl ( ( 𝜑𝑑 = 𝐷 ) → { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝑑 ) ∧ 𝑐 ∈ ( 𝑃𝑑 ) ) ∧ ∃ 𝑡𝑑 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } )
54 df-xp ( 𝑃 × 𝑃 ) = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎𝑃𝑏𝑃 ) }
55 1 fvexi 𝑃 ∈ V
56 55 55 xpex ( 𝑃 × 𝑃 ) ∈ V
57 54 56 eqeltrri { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎𝑃𝑏𝑃 ) } ∈ V
58 eldifi ( 𝑎 ∈ ( 𝑃𝐷 ) → 𝑎𝑃 )
59 eldifi ( 𝑏 ∈ ( 𝑃𝐷 ) → 𝑏𝑃 )
60 58 59 anim12i ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) → ( 𝑎𝑃𝑏𝑃 ) )
61 60 ad2ant2r ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ) → ( 𝑎𝑃𝑏𝑃 ) )
62 61 ad2ant2r ( ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) → ( 𝑎𝑃𝑏𝑃 ) )
63 62 rexlimivw ( ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) → ( 𝑎𝑃𝑏𝑃 ) )
64 63 ssopab2i { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ⊆ { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( 𝑎𝑃𝑏𝑃 ) }
65 57 64 ssexi { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ∈ V
66 65 a1i ( 𝜑 → { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } ∈ V )
67 39 53 6 66 fvmptd ( 𝜑 → ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) } )
68 vex 𝑎 ∈ V
69 vex 𝑐 ∈ V
70 eleq1w ( 𝑒 = 𝑎 → ( 𝑒 ∈ ( 𝑃𝐷 ) ↔ 𝑎 ∈ ( 𝑃𝐷 ) ) )
71 70 anbi1d ( 𝑒 = 𝑎 → ( ( 𝑒 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ↔ ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ) )
72 oveq1 ( 𝑒 = 𝑎 → ( 𝑒 𝐼 𝑓 ) = ( 𝑎 𝐼 𝑓 ) )
73 72 eleq2d ( 𝑒 = 𝑎 → ( 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ↔ 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ) )
74 73 rexbidv ( 𝑒 = 𝑎 → ( ∃ 𝑡𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ↔ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ) )
75 71 74 anbi12d ( 𝑒 = 𝑎 → ( ( ( 𝑒 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) ↔ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ) ) )
76 eleq1w ( 𝑓 = 𝑐 → ( 𝑓 ∈ ( 𝑃𝐷 ) ↔ 𝑐 ∈ ( 𝑃𝐷 ) ) )
77 76 anbi2d ( 𝑓 = 𝑐 → ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ↔ ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ) )
78 oveq2 ( 𝑓 = 𝑐 → ( 𝑎 𝐼 𝑓 ) = ( 𝑎 𝐼 𝑐 ) )
79 78 eleq2d ( 𝑓 = 𝑐 → ( 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ↔ 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) )
80 79 rexbidv ( 𝑓 = 𝑐 → ( ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ↔ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) )
81 77 80 anbi12d ( 𝑓 = 𝑐 → ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑓 ) ) ↔ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ) )
82 simpl ( ( 𝑎 = 𝑒𝑏 = 𝑓 ) → 𝑎 = 𝑒 )
83 82 eleq1d ( ( 𝑎 = 𝑒𝑏 = 𝑓 ) → ( 𝑎 ∈ ( 𝑃𝐷 ) ↔ 𝑒 ∈ ( 𝑃𝐷 ) ) )
84 simpr ( ( 𝑎 = 𝑒𝑏 = 𝑓 ) → 𝑏 = 𝑓 )
85 84 eleq1d ( ( 𝑎 = 𝑒𝑏 = 𝑓 ) → ( 𝑏 ∈ ( 𝑃𝐷 ) ↔ 𝑓 ∈ ( 𝑃𝐷 ) ) )
86 83 85 anbi12d ( ( 𝑎 = 𝑒𝑏 = 𝑓 ) → ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ↔ ( 𝑒 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ) )
87 oveq12 ( ( 𝑎 = 𝑒𝑏 = 𝑓 ) → ( 𝑎 𝐼 𝑏 ) = ( 𝑒 𝐼 𝑓 ) )
88 87 eleq2d ( ( 𝑎 = 𝑒𝑏 = 𝑓 ) → ( 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ↔ 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) )
89 88 rexbidv ( ( 𝑎 = 𝑒𝑏 = 𝑓 ) → ( ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ↔ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) )
90 86 89 anbi12d ( ( 𝑎 = 𝑒𝑏 = 𝑓 ) → ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) ↔ ( ( 𝑒 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) ) )
91 90 cbvopabv { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( ( 𝑒 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) }
92 4 91 eqtri 𝑂 = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( ( 𝑒 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) }
93 68 69 75 81 92 brab ( 𝑎 𝑂 𝑐 ↔ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) )
94 vex 𝑏 ∈ V
95 eleq1w ( 𝑒 = 𝑏 → ( 𝑒 ∈ ( 𝑃𝐷 ) ↔ 𝑏 ∈ ( 𝑃𝐷 ) ) )
96 95 anbi1d ( 𝑒 = 𝑏 → ( ( 𝑒 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ↔ ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ) )
97 oveq1 ( 𝑒 = 𝑏 → ( 𝑒 𝐼 𝑓 ) = ( 𝑏 𝐼 𝑓 ) )
98 97 eleq2d ( 𝑒 = 𝑏 → ( 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ↔ 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ) )
99 98 rexbidv ( 𝑒 = 𝑏 → ( ∃ 𝑡𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ↔ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ) )
100 96 99 anbi12d ( 𝑒 = 𝑏 → ( ( ( 𝑒 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑒 𝐼 𝑓 ) ) ↔ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ) ) )
101 76 anbi2d ( 𝑓 = 𝑐 → ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ↔ ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ) )
102 oveq2 ( 𝑓 = 𝑐 → ( 𝑏 𝐼 𝑓 ) = ( 𝑏 𝐼 𝑐 ) )
103 102 eleq2d ( 𝑓 = 𝑐 → ( 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ↔ 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) )
104 103 rexbidv ( 𝑓 = 𝑐 → ( ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ↔ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) )
105 101 104 anbi12d ( 𝑓 = 𝑐 → ( ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑓 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑓 ) ) ↔ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) )
106 94 69 100 105 92 brab ( 𝑏 𝑂 𝑐 ↔ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) )
107 93 106 anbi12i ( ( 𝑎 𝑂 𝑐𝑏 𝑂 𝑐 ) ↔ ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) )
108 107 rexbii ( ∃ 𝑐𝑃 ( 𝑎 𝑂 𝑐𝑏 𝑂 𝑐 ) ↔ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) )
109 108 opabbii { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( 𝑎 𝑂 𝑐𝑏 𝑂 𝑐 ) } = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑃𝐷 ) ∧ 𝑐 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑏 𝐼 𝑐 ) ) ) }
110 67 109 eqtr4di ( 𝜑 → ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ∃ 𝑐𝑃 ( 𝑎 𝑂 𝑐𝑏 𝑂 𝑐 ) } )