Metamath Proof Explorer


Theorem hpgne1

Description: Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishpg.p P=BaseG
ishpg.i I=ItvG
ishpg.l L=Line𝒢G
ishpg.o O=ab|aPDbPDtDtaIb
ishpg.g φG𝒢Tarski
ishpg.d φDranL
hpgbr.a φAP
hpgbr.b φBP
hpgne1.1 φAhp𝒢GDB
Assertion hpgne1 φ¬AD

Proof

Step Hyp Ref Expression
1 ishpg.p P=BaseG
2 ishpg.i I=ItvG
3 ishpg.l L=Line𝒢G
4 ishpg.o O=ab|aPDbPDtDtaIb
5 ishpg.g φG𝒢Tarski
6 ishpg.d φDranL
7 hpgbr.a φAP
8 hpgbr.b φBP
9 hpgne1.1 φAhp𝒢GDB
10 eqid distG=distG
11 6 ad2antrr φcPAOcBOcDranL
12 5 ad2antrr φcPAOcBOcG𝒢Tarski
13 7 ad2antrr φcPAOcBOcAP
14 simplr φcPAOcBOccP
15 simprl φcPAOcBOcAOc
16 1 10 2 4 3 11 12 13 14 15 oppne1 φcPAOcBOc¬AD
17 1 2 3 4 5 6 7 8 hpgbr φAhp𝒢GDBcPAOcBOc
18 9 17 mpbid φcPAOcBOc
19 16 18 r19.29a φ¬AD