Metamath Proof Explorer


Definition df-hpg

Description: Define the open half plane relation for a geometry G . Definition 9.7 of Schwabhauser p. 71. See hpgbr to find the same formulation. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Assertion df-hpg hp𝒢=gVdranLine𝒢gab|[˙Baseg/p]˙[˙Itvg/i]˙cpapdcpdtdtaicbpdcpdtdtbic

Detailed syntax breakdown

Step Hyp Ref Expression
0 chpg classhp𝒢
1 vg setvarg
2 cvv classV
3 vd setvard
4 clng classLine𝒢
5 1 cv setvarg
6 5 4 cfv classLine𝒢g
7 6 crn classranLine𝒢g
8 va setvara
9 vb setvarb
10 cbs classBase
11 5 10 cfv classBaseg
12 vp setvarp
13 citv classItv
14 5 13 cfv classItvg
15 vi setvari
16 vc setvarc
17 12 cv setvarp
18 8 cv setvara
19 3 cv setvard
20 17 19 cdif classpd
21 18 20 wcel wffapd
22 16 cv setvarc
23 22 20 wcel wffcpd
24 21 23 wa wffapdcpd
25 vt setvart
26 25 cv setvart
27 15 cv setvari
28 18 22 27 co classaic
29 26 28 wcel wfftaic
30 29 25 19 wrex wfftdtaic
31 24 30 wa wffapdcpdtdtaic
32 9 cv setvarb
33 32 20 wcel wffbpd
34 33 23 wa wffbpdcpd
35 32 22 27 co classbic
36 26 35 wcel wfftbic
37 36 25 19 wrex wfftdtbic
38 34 37 wa wffbpdcpdtdtbic
39 31 38 wa wffapdcpdtdtaicbpdcpdtdtbic
40 39 16 17 wrex wffcpapdcpdtdtaicbpdcpdtdtbic
41 40 15 14 wsbc wff[˙Itvg/i]˙cpapdcpdtdtaicbpdcpdtdtbic
42 41 12 11 wsbc wff[˙Baseg/p]˙[˙Itvg/i]˙cpapdcpdtdtaicbpdcpdtdtbic
43 42 8 9 copab classab|[˙Baseg/p]˙[˙Itvg/i]˙cpapdcpdtdtaicbpdcpdtdtbic
44 3 7 43 cmpt classdranLine𝒢gab|[˙Baseg/p]˙[˙Itvg/i]˙cpapdcpdtdtaicbpdcpdtdtbic
45 1 2 44 cmpt classgVdranLine𝒢gab|[˙Baseg/p]˙[˙Itvg/i]˙cpapdcpdtdtaicbpdcpdtdtbic
46 0 45 wceq wffhp𝒢=gVdranLine𝒢gab|[˙Baseg/p]˙[˙Itvg/i]˙cpapdcpdtdtaicbpdcpdtdtbic