| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpgid.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hpgid.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | hpgid.l |  |-  L = ( LineG ` G ) | 
						
							| 4 |  | hpgid.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | hpgid.d |  |-  ( ph -> D e. ran L ) | 
						
							| 6 |  | hpgid.a |  |-  ( ph -> A e. P ) | 
						
							| 7 |  | hpgid.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 8 |  | hpgcom.b |  |-  ( ph -> B e. P ) | 
						
							| 9 |  | hpgcom.1 |  |-  ( ph -> A ( ( hpG ` G ) ` D ) B ) | 
						
							| 10 |  | hpgtr.c |  |-  ( ph -> C e. P ) | 
						
							| 11 |  | hpgtr.1 |  |-  ( ph -> B ( ( hpG ` G ) ` D ) C ) | 
						
							| 12 | 1 2 3 7 4 5 6 8 | hpgbr |  |-  ( ph -> ( A ( ( hpG ` G ) ` D ) B <-> E. c e. P ( A O c /\ B O c ) ) ) | 
						
							| 13 | 9 12 | mpbid |  |-  ( ph -> E. c e. P ( A O c /\ B O c ) ) | 
						
							| 14 |  | simprl |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> A O c ) | 
						
							| 15 | 11 | ad2antrr |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> B ( ( hpG ` G ) ` D ) C ) | 
						
							| 16 | 4 | ad2antrr |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> G e. TarskiG ) | 
						
							| 17 | 5 | ad2antrr |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> D e. ran L ) | 
						
							| 18 | 8 | ad2antrr |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> B e. P ) | 
						
							| 19 | 10 | ad2antrr |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> C e. P ) | 
						
							| 20 |  | simplr |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> c e. P ) | 
						
							| 21 |  | simprr |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> B O c ) | 
						
							| 22 | 1 2 3 7 16 17 18 19 20 21 | lnopp2hpgb |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> ( C O c <-> B ( ( hpG ` G ) ` D ) C ) ) | 
						
							| 23 | 15 22 | mpbird |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> C O c ) | 
						
							| 24 | 14 23 | jca |  |-  ( ( ( ph /\ c e. P ) /\ ( A O c /\ B O c ) ) -> ( A O c /\ C O c ) ) | 
						
							| 25 | 24 | ex |  |-  ( ( ph /\ c e. P ) -> ( ( A O c /\ B O c ) -> ( A O c /\ C O c ) ) ) | 
						
							| 26 | 25 | reximdva |  |-  ( ph -> ( E. c e. P ( A O c /\ B O c ) -> E. c e. P ( A O c /\ C O c ) ) ) | 
						
							| 27 | 13 26 | mpd |  |-  ( ph -> E. c e. P ( A O c /\ C O c ) ) | 
						
							| 28 | 1 2 3 7 4 5 6 10 | hpgbr |  |-  ( ph -> ( A ( ( hpG ` G ) ` D ) C <-> E. c e. P ( A O c /\ C O c ) ) ) | 
						
							| 29 | 27 28 | mpbird |  |-  ( ph -> A ( ( hpG ` G ) ` D ) C ) |