Metamath Proof Explorer


Theorem hpgtr

Description: The half-plane relation is transitive. Theorem 9.13 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses hpgid.p 𝑃 = ( Base ‘ 𝐺 )
hpgid.i 𝐼 = ( Itv ‘ 𝐺 )
hpgid.l 𝐿 = ( LineG ‘ 𝐺 )
hpgid.g ( 𝜑𝐺 ∈ TarskiG )
hpgid.d ( 𝜑𝐷 ∈ ran 𝐿 )
hpgid.a ( 𝜑𝐴𝑃 )
hpgid.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
hpgcom.b ( 𝜑𝐵𝑃 )
hpgcom.1 ( 𝜑𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 )
hpgtr.c ( 𝜑𝐶𝑃 )
hpgtr.1 ( 𝜑𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 )
Assertion hpgtr ( 𝜑𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 )

Proof

Step Hyp Ref Expression
1 hpgid.p 𝑃 = ( Base ‘ 𝐺 )
2 hpgid.i 𝐼 = ( Itv ‘ 𝐺 )
3 hpgid.l 𝐿 = ( LineG ‘ 𝐺 )
4 hpgid.g ( 𝜑𝐺 ∈ TarskiG )
5 hpgid.d ( 𝜑𝐷 ∈ ran 𝐿 )
6 hpgid.a ( 𝜑𝐴𝑃 )
7 hpgid.o 𝑂 = { ⟨ 𝑎 , 𝑏 ⟩ ∣ ( ( 𝑎 ∈ ( 𝑃𝐷 ) ∧ 𝑏 ∈ ( 𝑃𝐷 ) ) ∧ ∃ 𝑡𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) }
8 hpgcom.b ( 𝜑𝐵𝑃 )
9 hpgcom.1 ( 𝜑𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 )
10 hpgtr.c ( 𝜑𝐶𝑃 )
11 hpgtr.1 ( 𝜑𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 )
12 1 2 3 7 4 5 6 8 hpgbr ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ↔ ∃ 𝑐𝑃 ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) )
13 9 12 mpbid ( 𝜑 → ∃ 𝑐𝑃 ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) )
14 simprl ( ( ( 𝜑𝑐𝑃 ) ∧ ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) → 𝐴 𝑂 𝑐 )
15 11 ad2antrr ( ( ( 𝜑𝑐𝑃 ) ∧ ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) → 𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 )
16 4 ad2antrr ( ( ( 𝜑𝑐𝑃 ) ∧ ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) → 𝐺 ∈ TarskiG )
17 5 ad2antrr ( ( ( 𝜑𝑐𝑃 ) ∧ ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) → 𝐷 ∈ ran 𝐿 )
18 8 ad2antrr ( ( ( 𝜑𝑐𝑃 ) ∧ ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) → 𝐵𝑃 )
19 10 ad2antrr ( ( ( 𝜑𝑐𝑃 ) ∧ ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) → 𝐶𝑃 )
20 simplr ( ( ( 𝜑𝑐𝑃 ) ∧ ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) → 𝑐𝑃 )
21 simprr ( ( ( 𝜑𝑐𝑃 ) ∧ ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) → 𝐵 𝑂 𝑐 )
22 1 2 3 7 16 17 18 19 20 21 lnopp2hpgb ( ( ( 𝜑𝑐𝑃 ) ∧ ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) → ( 𝐶 𝑂 𝑐𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 ) )
23 15 22 mpbird ( ( ( 𝜑𝑐𝑃 ) ∧ ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) → 𝐶 𝑂 𝑐 )
24 14 23 jca ( ( ( 𝜑𝑐𝑃 ) ∧ ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) ) → ( 𝐴 𝑂 𝑐𝐶 𝑂 𝑐 ) )
25 24 ex ( ( 𝜑𝑐𝑃 ) → ( ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) → ( 𝐴 𝑂 𝑐𝐶 𝑂 𝑐 ) ) )
26 25 reximdva ( 𝜑 → ( ∃ 𝑐𝑃 ( 𝐴 𝑂 𝑐𝐵 𝑂 𝑐 ) → ∃ 𝑐𝑃 ( 𝐴 𝑂 𝑐𝐶 𝑂 𝑐 ) ) )
27 13 26 mpd ( 𝜑 → ∃ 𝑐𝑃 ( 𝐴 𝑂 𝑐𝐶 𝑂 𝑐 ) )
28 1 2 3 7 4 5 6 10 hpgbr ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 ↔ ∃ 𝑐𝑃 ( 𝐴 𝑂 𝑐𝐶 𝑂 𝑐 ) ) )
29 27 28 mpbird ( 𝜑𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐶 )