Step |
Hyp |
Ref |
Expression |
1 |
|
hpgid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
hpgid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
hpgid.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
hpgid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
hpgid.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
6 |
|
hpgid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
7 |
|
hpgid.o |
⊢ 𝑂 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ 𝐷 ) ∧ 𝑏 ∈ ( 𝑃 ∖ 𝐷 ) ) ∧ ∃ 𝑡 ∈ 𝐷 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } |
8 |
|
hpgcom.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
|
hpgcom.1 |
⊢ ( 𝜑 → 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) |
10 |
|
ancom |
⊢ ( ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ↔ ( 𝐵 𝑂 𝑐 ∧ 𝐴 𝑂 𝑐 ) ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ↔ ( 𝐵 𝑂 𝑐 ∧ 𝐴 𝑂 𝑐 ) ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝑃 ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ↔ ∃ 𝑐 ∈ 𝑃 ( 𝐵 𝑂 𝑐 ∧ 𝐴 𝑂 𝑐 ) ) ) |
13 |
1 2 3 7 4 5 6 8
|
hpgbr |
⊢ ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ↔ ∃ 𝑐 ∈ 𝑃 ( 𝐴 𝑂 𝑐 ∧ 𝐵 𝑂 𝑐 ) ) ) |
14 |
1 2 3 7 4 5 8 6
|
hpgbr |
⊢ ( 𝜑 → ( 𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐴 ↔ ∃ 𝑐 ∈ 𝑃 ( 𝐵 𝑂 𝑐 ∧ 𝐴 𝑂 𝑐 ) ) ) |
15 |
12 13 14
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ↔ 𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐴 ) ) |
16 |
9 15
|
mpbid |
⊢ ( 𝜑 → 𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐴 ) |