| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpgid.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hpgid.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | hpgid.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 4 |  | hpgid.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | hpgid.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 6 |  | hpgid.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 7 |  | hpgid.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 8 |  | hpgcom.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 9 |  | hpgcom.1 | ⊢ ( 𝜑  →  𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵 ) | 
						
							| 10 |  | ancom | ⊢ ( ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 )  ↔  ( 𝐵 𝑂 𝑐  ∧  𝐴 𝑂 𝑐 ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 )  ↔  ( 𝐵 𝑂 𝑐  ∧  𝐴 𝑂 𝑐 ) ) ) | 
						
							| 12 | 11 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑐  ∈  𝑃 ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 )  ↔  ∃ 𝑐  ∈  𝑃 ( 𝐵 𝑂 𝑐  ∧  𝐴 𝑂 𝑐 ) ) ) | 
						
							| 13 | 1 2 3 7 4 5 6 8 | hpgbr | ⊢ ( 𝜑  →  ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵  ↔  ∃ 𝑐  ∈  𝑃 ( 𝐴 𝑂 𝑐  ∧  𝐵 𝑂 𝑐 ) ) ) | 
						
							| 14 | 1 2 3 7 4 5 8 6 | hpgbr | ⊢ ( 𝜑  →  ( 𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐴  ↔  ∃ 𝑐  ∈  𝑃 ( 𝐵 𝑂 𝑐  ∧  𝐴 𝑂 𝑐 ) ) ) | 
						
							| 15 | 12 13 14 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝐴 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐵  ↔  𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐴 ) ) | 
						
							| 16 | 9 15 | mpbid | ⊢ ( 𝜑  →  𝐵 ( ( hpG ‘ 𝐺 ) ‘ 𝐷 ) 𝐴 ) |