| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpgid.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hpgid.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | hpgid.l |  |-  L = ( LineG ` G ) | 
						
							| 4 |  | hpgid.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | hpgid.d |  |-  ( ph -> D e. ran L ) | 
						
							| 6 |  | hpgid.a |  |-  ( ph -> A e. P ) | 
						
							| 7 |  | hpgid.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 8 |  | hpgid.1 |  |-  ( ph -> -. A e. D ) | 
						
							| 9 |  | simprr |  |-  ( ( ph /\ ( c e. P /\ A O c ) ) -> A O c ) | 
						
							| 10 | 9 9 | jca |  |-  ( ( ph /\ ( c e. P /\ A O c ) ) -> ( A O c /\ A O c ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 | hpgerlem |  |-  ( ph -> E. c e. P A O c ) | 
						
							| 12 | 10 11 | reximddv |  |-  ( ph -> E. c e. P ( A O c /\ A O c ) ) | 
						
							| 13 | 1 2 3 7 4 5 6 6 | hpgbr |  |-  ( ph -> ( A ( ( hpG ` G ) ` D ) A <-> E. c e. P ( A O c /\ A O c ) ) ) | 
						
							| 14 | 12 13 | mpbird |  |-  ( ph -> A ( ( hpG ` G ) ` D ) A ) |