| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpgid.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | hpgid.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | hpgid.l |  |-  L = ( LineG ` G ) | 
						
							| 4 |  | hpgid.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | hpgid.d |  |-  ( ph -> D e. ran L ) | 
						
							| 6 |  | hpgid.a |  |-  ( ph -> A e. P ) | 
						
							| 7 |  | hpgid.o |  |-  O = { <. a , b >. | ( ( a e. ( P \ D ) /\ b e. ( P \ D ) ) /\ E. t e. D t e. ( a I b ) ) } | 
						
							| 8 |  | hpgid.1 |  |-  ( ph -> -. A e. D ) | 
						
							| 9 | 3 4 5 | tglnne0 |  |-  ( ph -> D =/= (/) ) | 
						
							| 10 |  | n0 |  |-  ( D =/= (/) <-> E. x x e. D ) | 
						
							| 11 | 9 10 | sylib |  |-  ( ph -> E. x x e. D ) | 
						
							| 12 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 13 | 4 | adantr |  |-  ( ( ph /\ x e. D ) -> G e. TarskiG ) | 
						
							| 14 | 6 | adantr |  |-  ( ( ph /\ x e. D ) -> A e. P ) | 
						
							| 15 | 5 | adantr |  |-  ( ( ph /\ x e. D ) -> D e. ran L ) | 
						
							| 16 |  | simpr |  |-  ( ( ph /\ x e. D ) -> x e. D ) | 
						
							| 17 | 1 3 2 13 15 16 | tglnpt |  |-  ( ( ph /\ x e. D ) -> x e. P ) | 
						
							| 18 | 5 | adantr |  |-  ( ( ph /\ ( # ` P ) = 1 ) -> D e. ran L ) | 
						
							| 19 | 4 | adantr |  |-  ( ( ph /\ ( # ` P ) = 1 ) -> G e. TarskiG ) | 
						
							| 20 |  | simpr |  |-  ( ( ph /\ ( # ` P ) = 1 ) -> ( # ` P ) = 1 ) | 
						
							| 21 | 1 2 3 19 20 | tglndim0 |  |-  ( ( ph /\ ( # ` P ) = 1 ) -> -. D e. ran L ) | 
						
							| 22 | 18 21 | pm2.65da |  |-  ( ph -> -. ( # ` P ) = 1 ) | 
						
							| 23 | 1 6 | tgldimor |  |-  ( ph -> ( ( # ` P ) = 1 \/ 2 <_ ( # ` P ) ) ) | 
						
							| 24 | 23 | ord |  |-  ( ph -> ( -. ( # ` P ) = 1 -> 2 <_ ( # ` P ) ) ) | 
						
							| 25 | 22 24 | mpd |  |-  ( ph -> 2 <_ ( # ` P ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ x e. D ) -> 2 <_ ( # ` P ) ) | 
						
							| 27 | 1 12 2 13 14 17 26 | tgbtwndiff |  |-  ( ( ph /\ x e. D ) -> E. c e. P ( x e. ( A I c ) /\ x =/= c ) ) | 
						
							| 28 | 8 | ad4antr |  |-  ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) -> -. A e. D ) | 
						
							| 29 | 13 | ad4antr |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> G e. TarskiG ) | 
						
							| 30 | 17 | ad4antr |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> x e. P ) | 
						
							| 31 |  | simpr |  |-  ( ( ( ph /\ x e. D ) /\ c e. P ) -> c e. P ) | 
						
							| 32 | 31 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> c e. P ) | 
						
							| 33 | 14 | ad4antr |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> A e. P ) | 
						
							| 34 |  | simplr |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> x =/= c ) | 
						
							| 35 |  | simplr |  |-  ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) -> x e. ( A I c ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> x e. ( A I c ) ) | 
						
							| 37 | 1 2 3 29 30 32 33 34 36 | btwnlng2 |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> A e. ( x L c ) ) | 
						
							| 38 | 15 | ad4antr |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> D e. ran L ) | 
						
							| 39 | 16 | ad4antr |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> x e. D ) | 
						
							| 40 |  | simpr |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> c e. D ) | 
						
							| 41 | 1 2 3 29 30 32 34 34 38 39 40 | tglinethru |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> D = ( x L c ) ) | 
						
							| 42 | 37 41 | eleqtrrd |  |-  ( ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) /\ c e. D ) -> A e. D ) | 
						
							| 43 | 28 42 | mtand |  |-  ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) -> -. c e. D ) | 
						
							| 44 |  | eleq1w |  |-  ( t = x -> ( t e. ( A I c ) <-> x e. ( A I c ) ) ) | 
						
							| 45 | 44 | rspcev |  |-  ( ( x e. D /\ x e. ( A I c ) ) -> E. t e. D t e. ( A I c ) ) | 
						
							| 46 | 45 | ad5ant24 |  |-  ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) -> E. t e. D t e. ( A I c ) ) | 
						
							| 47 | 28 43 46 | jca31 |  |-  ( ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ x e. ( A I c ) ) /\ x =/= c ) -> ( ( -. A e. D /\ -. c e. D ) /\ E. t e. D t e. ( A I c ) ) ) | 
						
							| 48 | 47 | anasss |  |-  ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ ( x e. ( A I c ) /\ x =/= c ) ) -> ( ( -. A e. D /\ -. c e. D ) /\ E. t e. D t e. ( A I c ) ) ) | 
						
							| 49 | 14 | adantr |  |-  ( ( ( ph /\ x e. D ) /\ c e. P ) -> A e. P ) | 
						
							| 50 | 1 12 2 7 49 31 | islnopp |  |-  ( ( ( ph /\ x e. D ) /\ c e. P ) -> ( A O c <-> ( ( -. A e. D /\ -. c e. D ) /\ E. t e. D t e. ( A I c ) ) ) ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ ( x e. ( A I c ) /\ x =/= c ) ) -> ( A O c <-> ( ( -. A e. D /\ -. c e. D ) /\ E. t e. D t e. ( A I c ) ) ) ) | 
						
							| 52 | 48 51 | mpbird |  |-  ( ( ( ( ph /\ x e. D ) /\ c e. P ) /\ ( x e. ( A I c ) /\ x =/= c ) ) -> A O c ) | 
						
							| 53 | 52 | ex |  |-  ( ( ( ph /\ x e. D ) /\ c e. P ) -> ( ( x e. ( A I c ) /\ x =/= c ) -> A O c ) ) | 
						
							| 54 | 53 | reximdva |  |-  ( ( ph /\ x e. D ) -> ( E. c e. P ( x e. ( A I c ) /\ x =/= c ) -> E. c e. P A O c ) ) | 
						
							| 55 | 27 54 | mpd |  |-  ( ( ph /\ x e. D ) -> E. c e. P A O c ) | 
						
							| 56 | 11 55 | exlimddv |  |-  ( ph -> E. c e. P A O c ) |