| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hpgid.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | hpgid.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | hpgid.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 4 |  | hpgid.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | hpgid.d | ⊢ ( 𝜑  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 6 |  | hpgid.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 7 |  | hpgid.o | ⊢ 𝑂  =  { 〈 𝑎 ,  𝑏 〉  ∣  ( ( 𝑎  ∈  ( 𝑃  ∖  𝐷 )  ∧  𝑏  ∈  ( 𝑃  ∖  𝐷 ) )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝑎 𝐼 𝑏 ) ) } | 
						
							| 8 |  | hpgid.1 | ⊢ ( 𝜑  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 9 | 3 4 5 | tglnne0 | ⊢ ( 𝜑  →  𝐷  ≠  ∅ ) | 
						
							| 10 |  | n0 | ⊢ ( 𝐷  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝐷 ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( 𝜑  →  ∃ 𝑥 𝑥  ∈  𝐷 ) | 
						
							| 12 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 13 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝐺  ∈  TarskiG ) | 
						
							| 14 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝐴  ∈  𝑃 ) | 
						
							| 15 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑥  ∈  𝐷 ) | 
						
							| 17 | 1 3 2 13 15 16 | tglnpt | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑥  ∈  𝑃 ) | 
						
							| 18 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  =  1 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 19 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  =  1 )  →  𝐺  ∈  TarskiG ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  =  1 )  →  ( ♯ ‘ 𝑃 )  =  1 ) | 
						
							| 21 | 1 2 3 19 20 | tglndim0 | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  =  1 )  →  ¬  𝐷  ∈  ran  𝐿 ) | 
						
							| 22 | 18 21 | pm2.65da | ⊢ ( 𝜑  →  ¬  ( ♯ ‘ 𝑃 )  =  1 ) | 
						
							| 23 | 1 6 | tgldimor | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑃 )  =  1  ∨  2  ≤  ( ♯ ‘ 𝑃 ) ) ) | 
						
							| 24 | 23 | ord | ⊢ ( 𝜑  →  ( ¬  ( ♯ ‘ 𝑃 )  =  1  →  2  ≤  ( ♯ ‘ 𝑃 ) ) ) | 
						
							| 25 | 22 24 | mpd | ⊢ ( 𝜑  →  2  ≤  ( ♯ ‘ 𝑃 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  2  ≤  ( ♯ ‘ 𝑃 ) ) | 
						
							| 27 | 1 12 2 13 14 17 26 | tgbtwndiff | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃ 𝑐  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝑐 )  ∧  𝑥  ≠  𝑐 ) ) | 
						
							| 28 | 8 | ad4antr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  →  ¬  𝐴  ∈  𝐷 ) | 
						
							| 29 | 13 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  ∧  𝑐  ∈  𝐷 )  →  𝐺  ∈  TarskiG ) | 
						
							| 30 | 17 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  ∧  𝑐  ∈  𝐷 )  →  𝑥  ∈  𝑃 ) | 
						
							| 31 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  →  𝑐  ∈  𝑃 ) | 
						
							| 32 | 31 | ad3antrrr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  ∧  𝑐  ∈  𝐷 )  →  𝑐  ∈  𝑃 ) | 
						
							| 33 | 14 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  ∧  𝑐  ∈  𝐷 )  →  𝐴  ∈  𝑃 ) | 
						
							| 34 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  ∧  𝑐  ∈  𝐷 )  →  𝑥  ≠  𝑐 ) | 
						
							| 35 |  | simplr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  →  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  ∧  𝑐  ∈  𝐷 )  →  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) ) | 
						
							| 37 | 1 2 3 29 30 32 33 34 36 | btwnlng2 | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  ∧  𝑐  ∈  𝐷 )  →  𝐴  ∈  ( 𝑥 𝐿 𝑐 ) ) | 
						
							| 38 | 15 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  ∧  𝑐  ∈  𝐷 )  →  𝐷  ∈  ran  𝐿 ) | 
						
							| 39 | 16 | ad4antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  ∧  𝑐  ∈  𝐷 )  →  𝑥  ∈  𝐷 ) | 
						
							| 40 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  ∧  𝑐  ∈  𝐷 )  →  𝑐  ∈  𝐷 ) | 
						
							| 41 | 1 2 3 29 30 32 34 34 38 39 40 | tglinethru | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  ∧  𝑐  ∈  𝐷 )  →  𝐷  =  ( 𝑥 𝐿 𝑐 ) ) | 
						
							| 42 | 37 41 | eleqtrrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  ∧  𝑐  ∈  𝐷 )  →  𝐴  ∈  𝐷 ) | 
						
							| 43 | 28 42 | mtand | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  →  ¬  𝑐  ∈  𝐷 ) | 
						
							| 44 |  | eleq1w | ⊢ ( 𝑡  =  𝑥  →  ( 𝑡  ∈  ( 𝐴 𝐼 𝑐 )  ↔  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) ) ) | 
						
							| 45 | 44 | rspcev | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  →  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝑐 ) ) | 
						
							| 46 | 45 | ad5ant24 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  →  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝑐 ) ) | 
						
							| 47 | 28 43 46 | jca31 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  𝑥  ∈  ( 𝐴 𝐼 𝑐 ) )  ∧  𝑥  ≠  𝑐 )  →  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝑐  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝑐 ) ) ) | 
						
							| 48 | 47 | anasss | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐴 𝐼 𝑐 )  ∧  𝑥  ≠  𝑐 ) )  →  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝑐  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝑐 ) ) ) | 
						
							| 49 | 14 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  →  𝐴  ∈  𝑃 ) | 
						
							| 50 | 1 12 2 7 49 31 | islnopp | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  →  ( 𝐴 𝑂 𝑐  ↔  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝑐  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝑐 ) ) ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐴 𝐼 𝑐 )  ∧  𝑥  ≠  𝑐 ) )  →  ( 𝐴 𝑂 𝑐  ↔  ( ( ¬  𝐴  ∈  𝐷  ∧  ¬  𝑐  ∈  𝐷 )  ∧  ∃ 𝑡  ∈  𝐷 𝑡  ∈  ( 𝐴 𝐼 𝑐 ) ) ) ) | 
						
							| 52 | 48 51 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  ∧  ( 𝑥  ∈  ( 𝐴 𝐼 𝑐 )  ∧  𝑥  ≠  𝑐 ) )  →  𝐴 𝑂 𝑐 ) | 
						
							| 53 | 52 | ex | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  ∧  𝑐  ∈  𝑃 )  →  ( ( 𝑥  ∈  ( 𝐴 𝐼 𝑐 )  ∧  𝑥  ≠  𝑐 )  →  𝐴 𝑂 𝑐 ) ) | 
						
							| 54 | 53 | reximdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ∃ 𝑐  ∈  𝑃 ( 𝑥  ∈  ( 𝐴 𝐼 𝑐 )  ∧  𝑥  ≠  𝑐 )  →  ∃ 𝑐  ∈  𝑃 𝐴 𝑂 𝑐 ) ) | 
						
							| 55 | 27 54 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃ 𝑐  ∈  𝑃 𝐴 𝑂 𝑐 ) | 
						
							| 56 | 11 55 | exlimddv | ⊢ ( 𝜑  →  ∃ 𝑐  ∈  𝑃 𝐴 𝑂 𝑐 ) |