Metamath Proof Explorer


Theorem hpgerlem

Description: Lemma for the proof that the half-plane relation is an equivalence relation. Lemma 9.10 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses hpgid.p P = Base G
hpgid.i I = Itv G
hpgid.l L = Line 𝒢 G
hpgid.g φ G 𝒢 Tarski
hpgid.d φ D ran L
hpgid.a φ A P
hpgid.o O = a b | a P D b P D t D t a I b
hpgid.1 φ ¬ A D
Assertion hpgerlem φ c P A O c

Proof

Step Hyp Ref Expression
1 hpgid.p P = Base G
2 hpgid.i I = Itv G
3 hpgid.l L = Line 𝒢 G
4 hpgid.g φ G 𝒢 Tarski
5 hpgid.d φ D ran L
6 hpgid.a φ A P
7 hpgid.o O = a b | a P D b P D t D t a I b
8 hpgid.1 φ ¬ A D
9 3 4 5 tglnne0 φ D
10 n0 D x x D
11 9 10 sylib φ x x D
12 eqid dist G = dist G
13 4 adantr φ x D G 𝒢 Tarski
14 6 adantr φ x D A P
15 5 adantr φ x D D ran L
16 simpr φ x D x D
17 1 3 2 13 15 16 tglnpt φ x D x P
18 5 adantr φ P = 1 D ran L
19 4 adantr φ P = 1 G 𝒢 Tarski
20 simpr φ P = 1 P = 1
21 1 2 3 19 20 tglndim0 φ P = 1 ¬ D ran L
22 18 21 pm2.65da φ ¬ P = 1
23 1 6 tgldimor φ P = 1 2 P
24 23 ord φ ¬ P = 1 2 P
25 22 24 mpd φ 2 P
26 25 adantr φ x D 2 P
27 1 12 2 13 14 17 26 tgbtwndiff φ x D c P x A I c x c
28 8 ad4antr φ x D c P x A I c x c ¬ A D
29 13 ad4antr φ x D c P x A I c x c c D G 𝒢 Tarski
30 17 ad4antr φ x D c P x A I c x c c D x P
31 simpr φ x D c P c P
32 31 ad3antrrr φ x D c P x A I c x c c D c P
33 14 ad4antr φ x D c P x A I c x c c D A P
34 simplr φ x D c P x A I c x c c D x c
35 simplr φ x D c P x A I c x c x A I c
36 35 adantr φ x D c P x A I c x c c D x A I c
37 1 2 3 29 30 32 33 34 36 btwnlng2 φ x D c P x A I c x c c D A x L c
38 15 ad4antr φ x D c P x A I c x c c D D ran L
39 16 ad4antr φ x D c P x A I c x c c D x D
40 simpr φ x D c P x A I c x c c D c D
41 1 2 3 29 30 32 34 34 38 39 40 tglinethru φ x D c P x A I c x c c D D = x L c
42 37 41 eleqtrrd φ x D c P x A I c x c c D A D
43 28 42 mtand φ x D c P x A I c x c ¬ c D
44 eleq1w t = x t A I c x A I c
45 44 rspcev x D x A I c t D t A I c
46 45 ad5ant24 φ x D c P x A I c x c t D t A I c
47 28 43 46 jca31 φ x D c P x A I c x c ¬ A D ¬ c D t D t A I c
48 47 anasss φ x D c P x A I c x c ¬ A D ¬ c D t D t A I c
49 14 adantr φ x D c P A P
50 1 12 2 7 49 31 islnopp φ x D c P A O c ¬ A D ¬ c D t D t A I c
51 50 adantr φ x D c P x A I c x c A O c ¬ A D ¬ c D t D t A I c
52 48 51 mpbird φ x D c P x A I c x c A O c
53 52 ex φ x D c P x A I c x c A O c
54 53 reximdva φ x D c P x A I c x c c P A O c
55 27 54 mpd φ x D c P A O c
56 11 55 exlimddv φ c P A O c