Metamath Proof Explorer


Theorem tglnne0

Description: A line A has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses tglnne0.l L=Line𝒢G
tglnne0.g φG𝒢Tarski
tglnne0.1 φAranL
Assertion tglnne0 φA

Proof

Step Hyp Ref Expression
1 tglnne0.l L=Line𝒢G
2 tglnne0.g φG𝒢Tarski
3 tglnne0.1 φAranL
4 eqid BaseG=BaseG
5 eqid ItvG=ItvG
6 2 ad3antrrr φxBaseGyBaseGA=xLyxyG𝒢Tarski
7 simpllr φxBaseGyBaseGA=xLyxyxBaseG
8 simplr φxBaseGyBaseGA=xLyxyyBaseG
9 simprr φxBaseGyBaseGA=xLyxyxy
10 4 5 1 6 7 8 9 tglinerflx1 φxBaseGyBaseGA=xLyxyxxLy
11 simprl φxBaseGyBaseGA=xLyxyA=xLy
12 10 11 eleqtrrd φxBaseGyBaseGA=xLyxyxA
13 12 ne0d φxBaseGyBaseGA=xLyxyA
14 4 5 1 2 3 tgisline φxBaseGyBaseGA=xLyxy
15 13 14 r19.29vva φA