Metamath Proof Explorer


Theorem tglnne0

Description: A line A has at least one point. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses tglnne0.l L = Line 𝒢 G
tglnne0.g φ G 𝒢 Tarski
tglnne0.1 φ A ran L
Assertion tglnne0 φ A

Proof

Step Hyp Ref Expression
1 tglnne0.l L = Line 𝒢 G
2 tglnne0.g φ G 𝒢 Tarski
3 tglnne0.1 φ A ran L
4 eqid Base G = Base G
5 eqid Itv G = Itv G
6 2 ad3antrrr φ x Base G y Base G A = x L y x y G 𝒢 Tarski
7 simpllr φ x Base G y Base G A = x L y x y x Base G
8 simplr φ x Base G y Base G A = x L y x y y Base G
9 simprr φ x Base G y Base G A = x L y x y x y
10 4 5 1 6 7 8 9 tglinerflx1 φ x Base G y Base G A = x L y x y x x L y
11 simprl φ x Base G y Base G A = x L y x y A = x L y
12 10 11 eleqtrrd φ x Base G y Base G A = x L y x y x A
13 12 ne0d φ x Base G y Base G A = x L y x y A
14 4 5 1 2 3 tgisline φ x Base G y Base G A = x L y x y
15 13 14 r19.29vva φ A