Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Lines
tglnne0
Next ⟩
tglnpt2
Metamath Proof Explorer
Ascii
Unicode
Theorem
tglnne0
Description:
A line
A
has at least one point.
(Contributed by
Thierry Arnoux
, 4-Mar-2020)
Ref
Expression
Hypotheses
tglnne0.l
⊢
L
=
Line
𝒢
⁡
G
tglnne0.g
⊢
φ
→
G
∈
𝒢
Tarski
tglnne0.1
⊢
φ
→
A
∈
ran
⁡
L
Assertion
tglnne0
⊢
φ
→
A
≠
∅
Proof
Step
Hyp
Ref
Expression
1
tglnne0.l
⊢
L
=
Line
𝒢
⁡
G
2
tglnne0.g
⊢
φ
→
G
∈
𝒢
Tarski
3
tglnne0.1
⊢
φ
→
A
∈
ran
⁡
L
4
eqid
⊢
Base
G
=
Base
G
5
eqid
⊢
Itv
⁡
G
=
Itv
⁡
G
6
2
ad3antrrr
⊢
φ
∧
x
∈
Base
G
∧
y
∈
Base
G
∧
A
=
x
L
y
∧
x
≠
y
→
G
∈
𝒢
Tarski
7
simpllr
⊢
φ
∧
x
∈
Base
G
∧
y
∈
Base
G
∧
A
=
x
L
y
∧
x
≠
y
→
x
∈
Base
G
8
simplr
⊢
φ
∧
x
∈
Base
G
∧
y
∈
Base
G
∧
A
=
x
L
y
∧
x
≠
y
→
y
∈
Base
G
9
simprr
⊢
φ
∧
x
∈
Base
G
∧
y
∈
Base
G
∧
A
=
x
L
y
∧
x
≠
y
→
x
≠
y
10
4
5
1
6
7
8
9
tglinerflx1
⊢
φ
∧
x
∈
Base
G
∧
y
∈
Base
G
∧
A
=
x
L
y
∧
x
≠
y
→
x
∈
x
L
y
11
simprl
⊢
φ
∧
x
∈
Base
G
∧
y
∈
Base
G
∧
A
=
x
L
y
∧
x
≠
y
→
A
=
x
L
y
12
10
11
eleqtrrd
⊢
φ
∧
x
∈
Base
G
∧
y
∈
Base
G
∧
A
=
x
L
y
∧
x
≠
y
→
x
∈
A
13
12
ne0d
⊢
φ
∧
x
∈
Base
G
∧
y
∈
Base
G
∧
A
=
x
L
y
∧
x
≠
y
→
A
≠
∅
14
4
5
1
2
3
tgisline
⊢
φ
→
∃
x
∈
Base
G
∃
y
∈
Base
G
A
=
x
L
y
∧
x
≠
y
15
13
14
r19.29vva
⊢
φ
→
A
≠
∅