| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglnne0.l |  |-  L = ( LineG ` G ) | 
						
							| 2 |  | tglnne0.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 3 |  | tglnne0.1 |  |-  ( ph -> A e. ran L ) | 
						
							| 4 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 5 |  | eqid |  |-  ( Itv ` G ) = ( Itv ` G ) | 
						
							| 6 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> G e. TarskiG ) | 
						
							| 7 |  | simpllr |  |-  ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x e. ( Base ` G ) ) | 
						
							| 8 |  | simplr |  |-  ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> y e. ( Base ` G ) ) | 
						
							| 9 |  | simprr |  |-  ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x =/= y ) | 
						
							| 10 | 4 5 1 6 7 8 9 | tglinerflx1 |  |-  ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x e. ( x L y ) ) | 
						
							| 11 |  | simprl |  |-  ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> A = ( x L y ) ) | 
						
							| 12 | 10 11 | eleqtrrd |  |-  ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x e. A ) | 
						
							| 13 | 12 | ne0d |  |-  ( ( ( ( ph /\ x e. ( Base ` G ) ) /\ y e. ( Base ` G ) ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> A =/= (/) ) | 
						
							| 14 | 4 5 1 2 3 | tgisline |  |-  ( ph -> E. x e. ( Base ` G ) E. y e. ( Base ` G ) ( A = ( x L y ) /\ x =/= y ) ) | 
						
							| 15 | 13 14 | r19.29vva |  |-  ( ph -> A =/= (/) ) |