| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglnne0.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 2 |  | tglnne0.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 3 |  | tglnne0.1 | ⊢ ( 𝜑  →  𝐴  ∈  ran  𝐿 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 5 |  | eqid | ⊢ ( Itv ‘ 𝐺 )  =  ( Itv ‘ 𝐺 ) | 
						
							| 6 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝐴  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 7 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝐴  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 8 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝐴  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝑦  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 9 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝐴  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  ≠  𝑦 ) | 
						
							| 10 | 4 5 1 6 7 8 9 | tglinerflx1 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝐴  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  ∈  ( 𝑥 𝐿 𝑦 ) ) | 
						
							| 11 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝐴  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝐴  =  ( 𝑥 𝐿 𝑦 ) ) | 
						
							| 12 | 10 11 | eleqtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝐴  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 13 | 12 | ne0d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝐴  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) )  →  𝐴  ≠  ∅ ) | 
						
							| 14 | 4 5 1 2 3 | tgisline | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ( Base ‘ 𝐺 ) ∃ 𝑦  ∈  ( Base ‘ 𝐺 ) ( 𝐴  =  ( 𝑥 𝐿 𝑦 )  ∧  𝑥  ≠  𝑦 ) ) | 
						
							| 15 | 13 14 | r19.29vva | ⊢ ( 𝜑  →  𝐴  ≠  ∅ ) |