Metamath Proof Explorer


Theorem tglndim0

Description: There are no lines in dimension 0. (Contributed by Thierry Arnoux, 18-Oct-2019)

Ref Expression
Hypotheses tglineelsb2.p B = Base G
tglineelsb2.i I = Itv G
tglineelsb2.l L = Line 𝒢 G
tglineelsb2.g φ G 𝒢 Tarski
tglndim0.d φ B = 1
Assertion tglndim0 φ ¬ A ran L

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B = Base G
2 tglineelsb2.i I = Itv G
3 tglineelsb2.l L = Line 𝒢 G
4 tglineelsb2.g φ G 𝒢 Tarski
5 tglndim0.d φ B = 1
6 5 ad4antr φ A ran L x B y B A = x L y x y B = 1
7 simpllr φ A ran L x B y B A = x L y x y x B
8 simplr φ A ran L x B y B A = x L y x y y B
9 1 6 7 8 tgldim0eq φ A ran L x B y B A = x L y x y x = y
10 simprr φ A ran L x B y B A = x L y x y x y
11 9 10 pm2.21ddne φ A ran L x B y B A = x L y x y
12 4 adantr φ A ran L G 𝒢 Tarski
13 simpr φ A ran L A ran L
14 1 2 3 12 13 tgisline φ A ran L x B y B A = x L y x y
15 11 14 r19.29vva φ A ran L
16 15 inegd φ ¬ A ran L