Step |
Hyp |
Ref |
Expression |
1 |
|
tglineelsb2.p |
|- B = ( Base ` G ) |
2 |
|
tglineelsb2.i |
|- I = ( Itv ` G ) |
3 |
|
tglineelsb2.l |
|- L = ( LineG ` G ) |
4 |
|
tglineelsb2.g |
|- ( ph -> G e. TarskiG ) |
5 |
|
tglndim0.d |
|- ( ph -> ( # ` B ) = 1 ) |
6 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ A e. ran L ) /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> ( # ` B ) = 1 ) |
7 |
|
simpllr |
|- ( ( ( ( ( ph /\ A e. ran L ) /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x e. B ) |
8 |
|
simplr |
|- ( ( ( ( ( ph /\ A e. ran L ) /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> y e. B ) |
9 |
1 6 7 8
|
tgldim0eq |
|- ( ( ( ( ( ph /\ A e. ran L ) /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x = y ) |
10 |
|
simprr |
|- ( ( ( ( ( ph /\ A e. ran L ) /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> x =/= y ) |
11 |
9 10
|
pm2.21ddne |
|- ( ( ( ( ( ph /\ A e. ran L ) /\ x e. B ) /\ y e. B ) /\ ( A = ( x L y ) /\ x =/= y ) ) -> F. ) |
12 |
4
|
adantr |
|- ( ( ph /\ A e. ran L ) -> G e. TarskiG ) |
13 |
|
simpr |
|- ( ( ph /\ A e. ran L ) -> A e. ran L ) |
14 |
1 2 3 12 13
|
tgisline |
|- ( ( ph /\ A e. ran L ) -> E. x e. B E. y e. B ( A = ( x L y ) /\ x =/= y ) ) |
15 |
11 14
|
r19.29vva |
|- ( ( ph /\ A e. ran L ) -> F. ) |
16 |
15
|
inegd |
|- ( ph -> -. A e. ran L ) |