| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfcgra2.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | dfcgra2.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | dfcgra2.m |  |-  .- = ( dist ` G ) | 
						
							| 4 |  | dfcgra2.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | dfcgra2.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | dfcgra2.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | dfcgra2.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | dfcgra2.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | dfcgra2.e |  |-  ( ph -> E e. P ) | 
						
							| 10 |  | dfcgra2.f |  |-  ( ph -> F e. P ) | 
						
							| 11 |  | acopy.l |  |-  L = ( LineG ` G ) | 
						
							| 12 |  | acopy.1 |  |-  ( ph -> -. ( A e. ( B L C ) \/ B = C ) ) | 
						
							| 13 |  | acopy.2 |  |-  ( ph -> -. ( D e. ( E L F ) \/ E = F ) ) | 
						
							| 14 |  | acopyeu.x |  |-  ( ph -> X e. P ) | 
						
							| 15 |  | acopyeu.y |  |-  ( ph -> Y e. P ) | 
						
							| 16 |  | acopyeu.k |  |-  K = ( hlG ` G ) | 
						
							| 17 |  | acopyeu.1 |  |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E X "> ) | 
						
							| 18 |  | acopyeu.2 |  |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E Y "> ) | 
						
							| 19 |  | acopyeu.3 |  |-  ( ph -> X ( ( hpG ` G ) ` ( D L E ) ) F ) | 
						
							| 20 |  | acopyeu.4 |  |-  ( ph -> Y ( ( hpG ` G ) ` ( D L E ) ) F ) | 
						
							| 21 | 14 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> X e. P ) | 
						
							| 22 | 21 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> X e. P ) | 
						
							| 23 |  | simplr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> y e. P ) | 
						
							| 24 | 15 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> Y e. P ) | 
						
							| 25 | 24 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> Y e. P ) | 
						
							| 26 | 4 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> G e. TarskiG ) | 
						
							| 27 | 26 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> G e. TarskiG ) | 
						
							| 28 | 9 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E e. P ) | 
						
							| 29 | 28 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> E e. P ) | 
						
							| 30 | 5 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> A e. P ) | 
						
							| 31 | 30 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> A e. P ) | 
						
							| 32 | 6 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> B e. P ) | 
						
							| 33 | 32 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> B e. P ) | 
						
							| 34 | 7 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> C e. P ) | 
						
							| 35 | 34 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> C e. P ) | 
						
							| 36 |  | simplr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d e. P ) | 
						
							| 37 | 36 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> d e. P ) | 
						
							| 38 | 10 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> F e. P ) | 
						
							| 39 | 38 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> F e. P ) | 
						
							| 40 | 12 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> -. ( A e. ( B L C ) \/ B = C ) ) | 
						
							| 41 | 40 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( A e. ( B L C ) \/ B = C ) ) | 
						
							| 42 | 8 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> D e. P ) | 
						
							| 43 | 13 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> -. ( D e. ( E L F ) \/ E = F ) ) | 
						
							| 44 |  | simprl |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d ( K ` E ) D ) | 
						
							| 45 | 1 2 16 36 42 28 26 11 44 | hlln |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d e. ( D L E ) ) | 
						
							| 46 | 1 2 16 36 42 28 26 44 | hlne1 |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> d =/= E ) | 
						
							| 47 | 1 2 11 26 42 28 38 36 43 45 46 | ncolncol |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> -. ( d e. ( E L F ) \/ E = F ) ) | 
						
							| 48 | 47 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( d e. ( E L F ) \/ E = F ) ) | 
						
							| 49 |  | simprr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( E .- d ) = ( B .- A ) ) | 
						
							| 50 | 1 3 2 26 28 36 32 30 49 | tgcgrcomlr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( d .- E ) = ( A .- B ) ) | 
						
							| 51 | 50 | eqcomd |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( A .- B ) = ( d .- E ) ) | 
						
							| 52 | 51 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> ( A .- B ) = ( d .- E ) ) | 
						
							| 53 |  | simpl |  |-  ( ( u = a /\ v = b ) -> u = a ) | 
						
							| 54 | 53 | eleq1d |  |-  ( ( u = a /\ v = b ) -> ( u e. ( P \ ( d L E ) ) <-> a e. ( P \ ( d L E ) ) ) ) | 
						
							| 55 |  | simpr |  |-  ( ( u = a /\ v = b ) -> v = b ) | 
						
							| 56 | 55 | eleq1d |  |-  ( ( u = a /\ v = b ) -> ( v e. ( P \ ( d L E ) ) <-> b e. ( P \ ( d L E ) ) ) ) | 
						
							| 57 | 54 56 | anbi12d |  |-  ( ( u = a /\ v = b ) -> ( ( u e. ( P \ ( d L E ) ) /\ v e. ( P \ ( d L E ) ) ) <-> ( a e. ( P \ ( d L E ) ) /\ b e. ( P \ ( d L E ) ) ) ) ) | 
						
							| 58 |  | simpr |  |-  ( ( ( u = a /\ v = b ) /\ w = t ) -> w = t ) | 
						
							| 59 |  | simpll |  |-  ( ( ( u = a /\ v = b ) /\ w = t ) -> u = a ) | 
						
							| 60 |  | simplr |  |-  ( ( ( u = a /\ v = b ) /\ w = t ) -> v = b ) | 
						
							| 61 | 59 60 | oveq12d |  |-  ( ( ( u = a /\ v = b ) /\ w = t ) -> ( u I v ) = ( a I b ) ) | 
						
							| 62 | 58 61 | eleq12d |  |-  ( ( ( u = a /\ v = b ) /\ w = t ) -> ( w e. ( u I v ) <-> t e. ( a I b ) ) ) | 
						
							| 63 | 62 | cbvrexdva |  |-  ( ( u = a /\ v = b ) -> ( E. w e. ( d L E ) w e. ( u I v ) <-> E. t e. ( d L E ) t e. ( a I b ) ) ) | 
						
							| 64 | 57 63 | anbi12d |  |-  ( ( u = a /\ v = b ) -> ( ( ( u e. ( P \ ( d L E ) ) /\ v e. ( P \ ( d L E ) ) ) /\ E. w e. ( d L E ) w e. ( u I v ) ) <-> ( ( a e. ( P \ ( d L E ) ) /\ b e. ( P \ ( d L E ) ) ) /\ E. t e. ( d L E ) t e. ( a I b ) ) ) ) | 
						
							| 65 | 64 | cbvopabv |  |-  { <. u , v >. | ( ( u e. ( P \ ( d L E ) ) /\ v e. ( P \ ( d L E ) ) ) /\ E. w e. ( d L E ) w e. ( u I v ) ) } = { <. a , b >. | ( ( a e. ( P \ ( d L E ) ) /\ b e. ( P \ ( d L E ) ) ) /\ E. t e. ( d L E ) t e. ( a I b ) ) } | 
						
							| 66 |  | simpllr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> x e. P ) | 
						
							| 67 |  | simprll |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> <" A B C "> ( cgrG ` G ) <" d E x "> ) | 
						
							| 68 |  | simprrl |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> <" A B C "> ( cgrG ` G ) <" d E y "> ) | 
						
							| 69 | 1 2 11 26 36 28 46 | tgelrnln |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( d L E ) e. ran L ) | 
						
							| 70 | 69 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> ( d L E ) e. ran L ) | 
						
							| 71 | 1 2 11 26 36 28 46 | tglinerflx2 |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E e. ( d L E ) ) | 
						
							| 72 | 71 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> E e. ( d L E ) ) | 
						
							| 73 | 42 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> D e. P ) | 
						
							| 74 | 1 11 2 4 6 7 5 12 | ncolrot2 |  |-  ( ph -> -. ( C e. ( A L B ) \/ A = B ) ) | 
						
							| 75 | 1 2 3 4 5 6 7 8 9 14 17 11 74 | cgrancol |  |-  ( ph -> -. ( X e. ( D L E ) \/ D = E ) ) | 
						
							| 76 | 1 11 2 4 8 9 14 75 | ncolcom |  |-  ( ph -> -. ( X e. ( E L D ) \/ E = D ) ) | 
						
							| 77 | 76 | ad5antr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( X e. ( E L D ) \/ E = D ) ) | 
						
							| 78 |  | simprlr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> x ( K ` E ) X ) | 
						
							| 79 | 1 2 16 66 22 29 27 11 78 | hlln |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> x e. ( X L E ) ) | 
						
							| 80 | 1 2 16 66 22 29 27 78 | hlne1 |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> x =/= E ) | 
						
							| 81 | 1 2 11 27 22 29 73 66 77 79 80 | ncolncol |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( x e. ( E L D ) \/ E = D ) ) | 
						
							| 82 | 1 11 2 27 29 73 66 81 | ncolcom |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( x e. ( D L E ) \/ D = E ) ) | 
						
							| 83 |  | pm2.45 |  |-  ( -. ( x e. ( D L E ) \/ D = E ) -> -. x e. ( D L E ) ) | 
						
							| 84 | 82 83 | syl |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. x e. ( D L E ) ) | 
						
							| 85 | 1 2 11 4 8 9 10 13 | ncolne1 |  |-  ( ph -> D =/= E ) | 
						
							| 86 | 1 2 11 4 8 9 85 | tgelrnln |  |-  ( ph -> ( D L E ) e. ran L ) | 
						
							| 87 | 86 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( D L E ) e. ran L ) | 
						
							| 88 | 1 2 11 4 8 9 85 | tglinerflx2 |  |-  ( ph -> E e. ( D L E ) ) | 
						
							| 89 | 88 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E e. ( D L E ) ) | 
						
							| 90 | 1 2 11 26 36 28 46 46 87 45 89 | tglinethru |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( D L E ) = ( d L E ) ) | 
						
							| 91 | 90 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> ( D L E ) = ( d L E ) ) | 
						
							| 92 | 84 91 | neleqtrd |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. x e. ( d L E ) ) | 
						
							| 93 | 1 2 11 27 70 29 65 16 72 66 22 92 78 | hphl |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> x ( ( hpG ` G ) ` ( d L E ) ) X ) | 
						
							| 94 | 90 | fveq2d |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( ( hpG ` G ) ` ( D L E ) ) = ( ( hpG ` G ) ` ( d L E ) ) ) | 
						
							| 95 | 94 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> ( ( hpG ` G ) ` ( D L E ) ) = ( ( hpG ` G ) ` ( d L E ) ) ) | 
						
							| 96 | 19 | ad5antr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> X ( ( hpG ` G ) ` ( D L E ) ) F ) | 
						
							| 97 | 95 96 | breqdi |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> X ( ( hpG ` G ) ` ( d L E ) ) F ) | 
						
							| 98 | 1 2 11 27 70 66 65 22 93 39 97 | hpgtr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> x ( ( hpG ` G ) ` ( d L E ) ) F ) | 
						
							| 99 | 1 2 3 4 5 6 7 8 9 15 18 11 74 | cgrancol |  |-  ( ph -> -. ( Y e. ( D L E ) \/ D = E ) ) | 
						
							| 100 | 1 11 2 4 8 9 15 99 | ncolcom |  |-  ( ph -> -. ( Y e. ( E L D ) \/ E = D ) ) | 
						
							| 101 | 100 | ad5antr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( Y e. ( E L D ) \/ E = D ) ) | 
						
							| 102 |  | simprrr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> y ( K ` E ) Y ) | 
						
							| 103 | 1 2 16 23 25 29 27 11 102 | hlln |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> y e. ( Y L E ) ) | 
						
							| 104 | 1 2 16 23 25 29 27 102 | hlne1 |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> y =/= E ) | 
						
							| 105 | 1 2 11 27 25 29 73 23 101 103 104 | ncolncol |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( y e. ( E L D ) \/ E = D ) ) | 
						
							| 106 | 1 11 2 27 29 73 23 105 | ncolcom |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. ( y e. ( D L E ) \/ D = E ) ) | 
						
							| 107 |  | pm2.45 |  |-  ( -. ( y e. ( D L E ) \/ D = E ) -> -. y e. ( D L E ) ) | 
						
							| 108 | 106 107 | syl |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. y e. ( D L E ) ) | 
						
							| 109 | 108 91 | neleqtrd |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> -. y e. ( d L E ) ) | 
						
							| 110 | 1 2 11 27 70 29 65 16 72 23 25 109 102 | hphl |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> y ( ( hpG ` G ) ` ( d L E ) ) Y ) | 
						
							| 111 | 20 | ad5antr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> Y ( ( hpG ` G ) ` ( D L E ) ) F ) | 
						
							| 112 | 95 111 | breqdi |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> Y ( ( hpG ` G ) ` ( d L E ) ) F ) | 
						
							| 113 | 1 2 11 27 70 23 65 25 110 39 112 | hpgtr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> y ( ( hpG ` G ) ` ( d L E ) ) F ) | 
						
							| 114 | 1 3 2 11 16 27 31 33 35 37 29 39 41 48 52 65 66 23 67 68 98 113 | trgcopyeulem |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> x = y ) | 
						
							| 115 | 114 78 | eqbrtrrd |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> y ( K ` E ) X ) | 
						
							| 116 | 1 2 16 23 22 29 27 115 | hlcomd |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> X ( K ` E ) y ) | 
						
							| 117 | 1 2 16 22 23 25 27 29 116 102 | hltr |  |-  ( ( ( ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) /\ x e. P ) /\ y e. P ) /\ ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) -> X ( K ` E ) Y ) | 
						
							| 118 | 17 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> <" A B C "> ( cgrA ` G ) <" D E X "> ) | 
						
							| 119 | 1 2 16 26 30 32 34 42 28 21 118 36 44 | cgrahl1 |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> <" A B C "> ( cgrA ` G ) <" d E X "> ) | 
						
							| 120 | 1 2 11 4 5 6 7 12 | ncolne1 |  |-  ( ph -> A =/= B ) | 
						
							| 121 | 120 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> A =/= B ) | 
						
							| 122 | 1 2 16 26 30 32 34 36 28 21 3 121 51 | iscgra1 |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( <" A B C "> ( cgrA ` G ) <" d E X "> <-> E. x e. P ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) ) ) | 
						
							| 123 | 119 122 | mpbid |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E. x e. P ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) ) | 
						
							| 124 | 18 | ad2antrr |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> <" A B C "> ( cgrA ` G ) <" D E Y "> ) | 
						
							| 125 | 1 2 16 26 30 32 34 42 28 24 124 36 44 | cgrahl1 |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> <" A B C "> ( cgrA ` G ) <" d E Y "> ) | 
						
							| 126 | 1 2 16 26 30 32 34 36 28 24 3 121 51 | iscgra1 |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> ( <" A B C "> ( cgrA ` G ) <" d E Y "> <-> E. y e. P ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) | 
						
							| 127 | 125 126 | mpbid |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E. y e. P ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) | 
						
							| 128 |  | reeanv |  |-  ( E. x e. P E. y e. P ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) <-> ( E. x e. P ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ E. y e. P ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) | 
						
							| 129 | 123 127 128 | sylanbrc |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> E. x e. P E. y e. P ( ( <" A B C "> ( cgrG ` G ) <" d E x "> /\ x ( K ` E ) X ) /\ ( <" A B C "> ( cgrG ` G ) <" d E y "> /\ y ( K ` E ) Y ) ) ) | 
						
							| 130 | 117 129 | r19.29vva |  |-  ( ( ( ph /\ d e. P ) /\ ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) -> X ( K ` E ) Y ) | 
						
							| 131 | 120 | necomd |  |-  ( ph -> B =/= A ) | 
						
							| 132 | 1 2 16 9 6 5 4 8 3 85 131 | hlcgrex |  |-  ( ph -> E. d e. P ( d ( K ` E ) D /\ ( E .- d ) = ( B .- A ) ) ) | 
						
							| 133 | 130 132 | r19.29a |  |-  ( ph -> X ( K ` E ) Y ) |