Metamath Proof Explorer


Theorem tgasa1

Description: Second congruence theorem: ASA. (Angle-Side-Angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent. Theorem 11.50 of Schwabhauser p. 108. (Contributed by Thierry Arnoux, 15-Aug-2020)

Ref Expression
Hypotheses tgsas.p P = Base G
tgsas.m - ˙ = dist G
tgsas.i I = Itv G
tgsas.g φ G 𝒢 Tarski
tgsas.a φ A P
tgsas.b φ B P
tgsas.c φ C P
tgsas.d φ D P
tgsas.e φ E P
tgsas.f φ F P
tgasa.l L = Line 𝒢 G
tgasa.1 φ ¬ C A L B A = B
tgasa.2 φ A - ˙ B = D - ˙ E
tgasa.3 φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
tgasa.4 φ ⟨“ CAB ”⟩ 𝒢 G ⟨“ FDE ”⟩
Assertion tgasa1 φ B - ˙ C = E - ˙ F

Proof

Step Hyp Ref Expression
1 tgsas.p P = Base G
2 tgsas.m - ˙ = dist G
3 tgsas.i I = Itv G
4 tgsas.g φ G 𝒢 Tarski
5 tgsas.a φ A P
6 tgsas.b φ B P
7 tgsas.c φ C P
8 tgsas.d φ D P
9 tgsas.e φ E P
10 tgsas.f φ F P
11 tgasa.l L = Line 𝒢 G
12 tgasa.1 φ ¬ C A L B A = B
13 tgasa.2 φ A - ˙ B = D - ˙ E
14 tgasa.3 φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
15 tgasa.4 φ ⟨“ CAB ”⟩ 𝒢 G ⟨“ FDE ”⟩
16 simprr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E - ˙ f = B - ˙ C
17 4 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C G 𝒢 Tarski
18 10 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C F P
19 8 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C D P
20 9 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E P
21 1 3 2 4 5 6 7 8 9 10 14 11 12 cgrancol φ ¬ F D L E D = E
22 21 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C ¬ F D L E D = E
23 eqid hl 𝒢 G = hl 𝒢 G
24 simplr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C f P
25 7 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C C P
26 5 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C A P
27 6 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C B P
28 12 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C ¬ C A L B A = B
29 4 ad3antrrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E D L F D = F G 𝒢 Tarski
30 8 ad3antrrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E D L F D = F D P
31 9 ad3antrrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E D L F D = F E P
32 10 ad3antrrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E D L F D = F F P
33 5 ad3antrrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E D L F D = F A P
34 6 ad3antrrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E D L F D = F B P
35 7 ad3antrrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E D L F D = F C P
36 1 3 4 23 5 6 7 8 9 10 14 cgracom φ ⟨“ DEF ”⟩ 𝒢 G ⟨“ ABC ”⟩
37 36 ad3antrrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E D L F D = F ⟨“ DEF ”⟩ 𝒢 G ⟨“ ABC ”⟩
38 simpr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E D L F D = F E D L F D = F
39 1 11 3 29 30 32 31 38 colcom φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E D L F D = F E F L D F = D
40 1 11 3 29 32 30 31 39 colrot1 φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E D L F D = F F D L E D = E
41 1 3 2 29 30 31 32 33 34 35 37 11 40 cgracol φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E D L F D = F C A L B A = B
42 12 ad3antrrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E D L F D = F ¬ C A L B A = B
43 41 42 pm2.65da φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C ¬ E D L F D = F
44 eqid 𝒢 G = 𝒢 G
45 14 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
46 simprl φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C f hl 𝒢 G E F
47 1 3 23 17 26 27 25 19 20 18 45 24 46 cgrahl2 φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEf ”⟩
48 1 3 23 4 5 6 7 8 9 10 14 cgrane1 φ A B
49 1 3 23 5 5 6 4 48 hlid φ A hl 𝒢 G B A
50 49 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C A hl 𝒢 G B A
51 1 3 23 4 5 6 7 8 9 10 14 cgrane2 φ B C
52 51 necomd φ C B
53 1 3 23 7 5 6 4 52 hlid φ C hl 𝒢 G B C
54 53 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C C hl 𝒢 G B C
55 1 2 3 4 5 6 8 9 13 tgcgrcomlr φ B - ˙ A = E - ˙ D
56 55 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C B - ˙ A = E - ˙ D
57 16 eqcomd φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C B - ˙ C = E - ˙ f
58 1 3 23 17 26 27 25 19 20 24 47 26 2 25 50 54 56 57 cgracgr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C A - ˙ C = D - ˙ f
59 1 2 3 17 26 25 19 24 58 tgcgrcomlr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C C - ˙ A = f - ˙ D
60 13 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C A - ˙ B = D - ˙ E
61 1 2 44 17 25 26 27 24 19 20 59 60 57 trgcgr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C ⟨“ CAB ”⟩ 𝒢 G ⟨“ fDE ”⟩
62 1 3 11 4 7 5 6 12 ncolne1 φ C A
63 62 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C C A
64 1 2 3 17 25 26 24 19 59 63 tgcgrneq φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C f D
65 1 3 23 24 18 19 17 64 hlid φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C f hl 𝒢 G D f
66 1 3 23 4 7 5 6 10 8 9 15 cgrane4 φ D E
67 66 necomd φ E D
68 1 3 23 9 5 8 4 67 hlid φ E hl 𝒢 G D E
69 68 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E hl 𝒢 G D E
70 1 3 23 17 25 26 27 24 19 20 24 20 61 65 69 iscgrad φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C ⟨“ CAB ”⟩ 𝒢 G ⟨“ fDE ”⟩
71 66 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C D E
72 1 3 17 23 24 19 20 64 71 cgraswap φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C ⟨“ fDE ”⟩ 𝒢 G ⟨“ EDf ”⟩
73 1 3 17 23 25 26 27 24 19 20 70 20 19 24 72 cgratr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C ⟨“ CAB ”⟩ 𝒢 G ⟨“ EDf ”⟩
74 1 3 23 4 7 5 6 10 8 9 15 cgrane3 φ D F
75 74 necomd φ F D
76 1 3 4 23 10 8 9 75 66 cgraswap φ ⟨“ FDE ”⟩ 𝒢 G ⟨“ EDF ”⟩
77 1 3 4 23 7 5 6 10 8 9 15 9 8 10 76 cgratr φ ⟨“ CAB ”⟩ 𝒢 G ⟨“ EDF ”⟩
78 77 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C ⟨“ CAB ”⟩ 𝒢 G ⟨“ EDF ”⟩
79 1 3 11 4 9 8 67 tgelrnln φ E L D ran L
80 79 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E L D ran L
81 simpl a = u b = v a = u
82 81 eleq1d a = u b = v a P E L D u P E L D
83 simpr a = u b = v b = v
84 83 eleq1d a = u b = v b P E L D v P E L D
85 82 84 anbi12d a = u b = v a P E L D b P E L D u P E L D v P E L D
86 simpr a = u b = v t = w t = w
87 simpll a = u b = v t = w a = u
88 simplr a = u b = v t = w b = v
89 87 88 oveq12d a = u b = v t = w a I b = u I v
90 86 89 eleq12d a = u b = v t = w t a I b w u I v
91 90 cbvrexdva a = u b = v t E L D t a I b w E L D w u I v
92 85 91 anbi12d a = u b = v a P E L D b P E L D t E L D t a I b u P E L D v P E L D w E L D w u I v
93 92 cbvopabv a b | a P E L D b P E L D t E L D t a I b = u v | u P E L D v P E L D w E L D w u I v
94 1 3 11 4 9 8 67 tglinerflx1 φ E E L D
95 94 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E E L D
96 1 11 3 4 8 9 10 21 ncolcom φ ¬ F E L D E = D
97 pm2.45 ¬ F E L D E = D ¬ F E L D
98 96 97 syl φ ¬ F E L D
99 98 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C ¬ F E L D
100 1 3 23 24 18 20 17 46 hlcomd φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C F hl 𝒢 G E f
101 1 3 11 17 80 20 93 23 95 18 24 99 100 hphl φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C F hp 𝒢 G E L D f
102 1 3 11 17 80 18 93 24 101 hpgcom φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C f hp 𝒢 G E L D F
103 1 3 11 4 79 10 93 98 hpgid φ F hp 𝒢 G E L D F
104 103 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C F hp 𝒢 G E L D F
105 1 3 2 17 25 26 27 20 19 18 11 28 43 24 18 23 73 78 102 104 acopyeu φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C f hl 𝒢 G D F
106 1 3 23 24 18 19 17 11 105 hlln φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C f F L D
107 1 3 11 4 10 8 75 tglinerflx1 φ F F L D
108 107 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C F F L D
109 1 3 23 4 5 6 7 8 9 10 14 cgrane4 φ E F
110 109 ad2antrr φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E F
111 1 3 23 24 18 20 17 11 46 hlln φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C f F L E
112 1 3 11 17 20 18 24 110 111 lncom φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C f E L F
113 1 3 11 17 20 18 110 tglinerflx2 φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C F E L F
114 1 3 11 17 18 19 20 18 22 106 108 112 113 tglineinteq φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C f = F
115 114 oveq2d φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C E - ˙ f = E - ˙ F
116 16 115 eqtr3d φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C B - ˙ C = E - ˙ F
117 109 necomd φ F E
118 1 3 23 9 6 7 4 10 2 117 51 hlcgrex φ f P f hl 𝒢 G E F E - ˙ f = B - ˙ C
119 116 118 r19.29a φ B - ˙ C = E - ˙ F