| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgsas.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tgsas.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
tgsas.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tgsas.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tgsas.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
tgsas.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
tgsas.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
tgsas.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
|
tgsas.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
| 10 |
|
tgsas.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
| 11 |
|
tgasa.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 12 |
|
tgasa.1 |
⊢ ( 𝜑 → ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 13 |
|
tgasa.2 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 14 |
|
tgasa.3 |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
| 15 |
|
tgasa.4 |
⊢ ( 𝜑 → 〈“ 𝐶 𝐴 𝐵 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐹 𝐷 𝐸 ”〉 ) |
| 16 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) |
| 17 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐺 ∈ TarskiG ) |
| 18 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐹 ∈ 𝑃 ) |
| 19 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐷 ∈ 𝑃 ) |
| 20 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐸 ∈ 𝑃 ) |
| 21 |
1 3 2 4 5 6 7 8 9 10 14 11 12
|
cgrancol |
⊢ ( 𝜑 → ¬ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) |
| 22 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → ¬ ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) |
| 23 |
|
eqid |
⊢ ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 ) |
| 24 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝑓 ∈ 𝑃 ) |
| 25 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐶 ∈ 𝑃 ) |
| 26 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐴 ∈ 𝑃 ) |
| 27 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐵 ∈ 𝑃 ) |
| 28 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 29 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) ∧ ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) → 𝐺 ∈ TarskiG ) |
| 30 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) ∧ ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) → 𝐷 ∈ 𝑃 ) |
| 31 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) ∧ ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) → 𝐸 ∈ 𝑃 ) |
| 32 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) ∧ ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) → 𝐹 ∈ 𝑃 ) |
| 33 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) ∧ ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) → 𝐴 ∈ 𝑃 ) |
| 34 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) ∧ ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) → 𝐵 ∈ 𝑃 ) |
| 35 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) ∧ ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) → 𝐶 ∈ 𝑃 ) |
| 36 |
1 3 4 23 5 6 7 8 9 10 14
|
cgracom |
⊢ ( 𝜑 → 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
| 37 |
36
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) ∧ ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) → 〈“ 𝐷 𝐸 𝐹 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
| 38 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) ∧ ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) → ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) |
| 39 |
1 11 3 29 30 32 31 38
|
colcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) ∧ ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) → ( 𝐸 ∈ ( 𝐹 𝐿 𝐷 ) ∨ 𝐹 = 𝐷 ) ) |
| 40 |
1 11 3 29 32 30 31 39
|
colrot1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) ∧ ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) → ( 𝐹 ∈ ( 𝐷 𝐿 𝐸 ) ∨ 𝐷 = 𝐸 ) ) |
| 41 |
1 3 2 29 30 31 32 33 34 35 37 11 40
|
cgracol |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) ∧ ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 42 |
12
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) ∧ ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) → ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 43 |
41 42
|
pm2.65da |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → ¬ ( 𝐸 ∈ ( 𝐷 𝐿 𝐹 ) ∨ 𝐷 = 𝐹 ) ) |
| 44 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
| 45 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝐹 ”〉 ) |
| 46 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ) |
| 47 |
1 3 23 17 26 27 25 19 20 18 45 24 46
|
cgrahl2 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐷 𝐸 𝑓 ”〉 ) |
| 48 |
1 3 23 4 5 6 7 8 9 10 14
|
cgrane1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 49 |
1 3 23 5 5 6 4 48
|
hlid |
⊢ ( 𝜑 → 𝐴 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐴 ) |
| 50 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐴 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐴 ) |
| 51 |
1 3 23 4 5 6 7 8 9 10 14
|
cgrane2 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) |
| 52 |
51
|
necomd |
⊢ ( 𝜑 → 𝐶 ≠ 𝐵 ) |
| 53 |
1 3 23 7 5 6 4 52
|
hlid |
⊢ ( 𝜑 → 𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐶 ) |
| 54 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐶 ( ( hlG ‘ 𝐺 ) ‘ 𝐵 ) 𝐶 ) |
| 55 |
1 2 3 4 5 6 8 9 13
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
| 56 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
| 57 |
16
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝑓 ) ) |
| 58 |
1 3 23 17 26 27 25 19 20 24 47 26 2 25 50 54 56 57
|
cgracgr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝑓 ) ) |
| 59 |
1 2 3 17 26 25 19 24 58
|
tgcgrcomlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → ( 𝐶 − 𝐴 ) = ( 𝑓 − 𝐷 ) ) |
| 60 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 61 |
1 2 44 17 25 26 27 24 19 20 59 60 57
|
trgcgr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 〈“ 𝐶 𝐴 𝐵 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝑓 𝐷 𝐸 ”〉 ) |
| 62 |
1 3 11 4 7 5 6 12
|
ncolne1 |
⊢ ( 𝜑 → 𝐶 ≠ 𝐴 ) |
| 63 |
62
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐶 ≠ 𝐴 ) |
| 64 |
1 2 3 17 25 26 24 19 59 63
|
tgcgrneq |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝑓 ≠ 𝐷 ) |
| 65 |
1 3 23 24 18 19 17 64
|
hlid |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐷 ) 𝑓 ) |
| 66 |
1 3 23 4 7 5 6 10 8 9 15
|
cgrane4 |
⊢ ( 𝜑 → 𝐷 ≠ 𝐸 ) |
| 67 |
66
|
necomd |
⊢ ( 𝜑 → 𝐸 ≠ 𝐷 ) |
| 68 |
1 3 23 9 5 8 4 67
|
hlid |
⊢ ( 𝜑 → 𝐸 ( ( hlG ‘ 𝐺 ) ‘ 𝐷 ) 𝐸 ) |
| 69 |
68
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐸 ( ( hlG ‘ 𝐺 ) ‘ 𝐷 ) 𝐸 ) |
| 70 |
1 3 23 17 25 26 27 24 19 20 24 20 61 65 69
|
iscgrad |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 〈“ 𝐶 𝐴 𝐵 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝑓 𝐷 𝐸 ”〉 ) |
| 71 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐷 ≠ 𝐸 ) |
| 72 |
1 3 17 23 24 19 20 64 71
|
cgraswap |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 〈“ 𝑓 𝐷 𝐸 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑓 ”〉 ) |
| 73 |
1 3 17 23 25 26 27 24 19 20 70 20 19 24 72
|
cgratr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 〈“ 𝐶 𝐴 𝐵 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝑓 ”〉 ) |
| 74 |
1 3 23 4 7 5 6 10 8 9 15
|
cgrane3 |
⊢ ( 𝜑 → 𝐷 ≠ 𝐹 ) |
| 75 |
74
|
necomd |
⊢ ( 𝜑 → 𝐹 ≠ 𝐷 ) |
| 76 |
1 3 4 23 10 8 9 75 66
|
cgraswap |
⊢ ( 𝜑 → 〈“ 𝐹 𝐷 𝐸 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝐹 ”〉 ) |
| 77 |
1 3 4 23 7 5 6 10 8 9 15 9 8 10 76
|
cgratr |
⊢ ( 𝜑 → 〈“ 𝐶 𝐴 𝐵 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝐹 ”〉 ) |
| 78 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 〈“ 𝐶 𝐴 𝐵 ”〉 ( cgrA ‘ 𝐺 ) 〈“ 𝐸 𝐷 𝐹 ”〉 ) |
| 79 |
1 3 11 4 9 8 67
|
tgelrnln |
⊢ ( 𝜑 → ( 𝐸 𝐿 𝐷 ) ∈ ran 𝐿 ) |
| 80 |
79
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → ( 𝐸 𝐿 𝐷 ) ∈ ran 𝐿 ) |
| 81 |
|
simpl |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → 𝑎 = 𝑢 ) |
| 82 |
81
|
eleq1d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( 𝑎 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ↔ 𝑢 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ) ) |
| 83 |
|
simpr |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → 𝑏 = 𝑣 ) |
| 84 |
83
|
eleq1d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( 𝑏 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ↔ 𝑣 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ) ) |
| 85 |
82 84
|
anbi12d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( ( 𝑎 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ∧ 𝑏 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ) ↔ ( 𝑢 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ∧ 𝑣 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ) ) ) |
| 86 |
|
simpr |
⊢ ( ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) ∧ 𝑡 = 𝑤 ) → 𝑡 = 𝑤 ) |
| 87 |
|
simpll |
⊢ ( ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) ∧ 𝑡 = 𝑤 ) → 𝑎 = 𝑢 ) |
| 88 |
|
simplr |
⊢ ( ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) ∧ 𝑡 = 𝑤 ) → 𝑏 = 𝑣 ) |
| 89 |
87 88
|
oveq12d |
⊢ ( ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) ∧ 𝑡 = 𝑤 ) → ( 𝑎 𝐼 𝑏 ) = ( 𝑢 𝐼 𝑣 ) ) |
| 90 |
86 89
|
eleq12d |
⊢ ( ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) ∧ 𝑡 = 𝑤 ) → ( 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ↔ 𝑤 ∈ ( 𝑢 𝐼 𝑣 ) ) ) |
| 91 |
90
|
cbvrexdva |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( ∃ 𝑡 ∈ ( 𝐸 𝐿 𝐷 ) 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ↔ ∃ 𝑤 ∈ ( 𝐸 𝐿 𝐷 ) 𝑤 ∈ ( 𝑢 𝐼 𝑣 ) ) ) |
| 92 |
85 91
|
anbi12d |
⊢ ( ( 𝑎 = 𝑢 ∧ 𝑏 = 𝑣 ) → ( ( ( 𝑎 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ∧ 𝑏 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ) ∧ ∃ 𝑡 ∈ ( 𝐸 𝐿 𝐷 ) 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) ↔ ( ( 𝑢 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ∧ 𝑣 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ) ∧ ∃ 𝑤 ∈ ( 𝐸 𝐿 𝐷 ) 𝑤 ∈ ( 𝑢 𝐼 𝑣 ) ) ) ) |
| 93 |
92
|
cbvopabv |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ∧ 𝑏 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ) ∧ ∃ 𝑡 ∈ ( 𝐸 𝐿 𝐷 ) 𝑡 ∈ ( 𝑎 𝐼 𝑏 ) ) } = { 〈 𝑢 , 𝑣 〉 ∣ ( ( 𝑢 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ∧ 𝑣 ∈ ( 𝑃 ∖ ( 𝐸 𝐿 𝐷 ) ) ) ∧ ∃ 𝑤 ∈ ( 𝐸 𝐿 𝐷 ) 𝑤 ∈ ( 𝑢 𝐼 𝑣 ) ) } |
| 94 |
1 3 11 4 9 8 67
|
tglinerflx1 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐸 𝐿 𝐷 ) ) |
| 95 |
94
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐸 ∈ ( 𝐸 𝐿 𝐷 ) ) |
| 96 |
1 11 3 4 8 9 10 21
|
ncolcom |
⊢ ( 𝜑 → ¬ ( 𝐹 ∈ ( 𝐸 𝐿 𝐷 ) ∨ 𝐸 = 𝐷 ) ) |
| 97 |
|
pm2.45 |
⊢ ( ¬ ( 𝐹 ∈ ( 𝐸 𝐿 𝐷 ) ∨ 𝐸 = 𝐷 ) → ¬ 𝐹 ∈ ( 𝐸 𝐿 𝐷 ) ) |
| 98 |
96 97
|
syl |
⊢ ( 𝜑 → ¬ 𝐹 ∈ ( 𝐸 𝐿 𝐷 ) ) |
| 99 |
98
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → ¬ 𝐹 ∈ ( 𝐸 𝐿 𝐷 ) ) |
| 100 |
1 3 23 24 18 20 17 46
|
hlcomd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐹 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝑓 ) |
| 101 |
1 3 11 17 80 20 93 23 95 18 24 99 100
|
hphl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐹 ( ( hpG ‘ 𝐺 ) ‘ ( 𝐸 𝐿 𝐷 ) ) 𝑓 ) |
| 102 |
1 3 11 17 80 18 93 24 101
|
hpgcom |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝑓 ( ( hpG ‘ 𝐺 ) ‘ ( 𝐸 𝐿 𝐷 ) ) 𝐹 ) |
| 103 |
1 3 11 4 79 10 93 98
|
hpgid |
⊢ ( 𝜑 → 𝐹 ( ( hpG ‘ 𝐺 ) ‘ ( 𝐸 𝐿 𝐷 ) ) 𝐹 ) |
| 104 |
103
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐹 ( ( hpG ‘ 𝐺 ) ‘ ( 𝐸 𝐿 𝐷 ) ) 𝐹 ) |
| 105 |
1 3 2 17 25 26 27 20 19 18 11 28 43 24 18 23 73 78 102 104
|
acopyeu |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐷 ) 𝐹 ) |
| 106 |
1 3 23 24 18 19 17 11 105
|
hlln |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝑓 ∈ ( 𝐹 𝐿 𝐷 ) ) |
| 107 |
1 3 11 4 10 8 75
|
tglinerflx1 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐹 𝐿 𝐷 ) ) |
| 108 |
107
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐹 ∈ ( 𝐹 𝐿 𝐷 ) ) |
| 109 |
1 3 23 4 5 6 7 8 9 10 14
|
cgrane4 |
⊢ ( 𝜑 → 𝐸 ≠ 𝐹 ) |
| 110 |
109
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐸 ≠ 𝐹 ) |
| 111 |
1 3 23 24 18 20 17 11 46
|
hlln |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝑓 ∈ ( 𝐹 𝐿 𝐸 ) ) |
| 112 |
1 3 11 17 20 18 24 110 111
|
lncom |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝑓 ∈ ( 𝐸 𝐿 𝐹 ) ) |
| 113 |
1 3 11 17 20 18 110
|
tglinerflx2 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝐹 ∈ ( 𝐸 𝐿 𝐹 ) ) |
| 114 |
1 3 11 17 18 19 20 18 22 106 108 112 113
|
tglineinteq |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → 𝑓 = 𝐹 ) |
| 115 |
114
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → ( 𝐸 − 𝑓 ) = ( 𝐸 − 𝐹 ) ) |
| 116 |
16 115
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 117 |
109
|
necomd |
⊢ ( 𝜑 → 𝐹 ≠ 𝐸 ) |
| 118 |
1 3 23 9 6 7 4 10 2 117 51
|
hlcgrex |
⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝑃 ( 𝑓 ( ( hlG ‘ 𝐺 ) ‘ 𝐸 ) 𝐹 ∧ ( 𝐸 − 𝑓 ) = ( 𝐵 − 𝐶 ) ) ) |
| 119 |
116 118
|
r19.29a |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |