Metamath Proof Explorer


Theorem tglng

Description: Lines of a Tarski Geometry. This relates to both Definition 4.10 of Schwabhauser p. 36. and Definition 6.14 of Schwabhauser p. 45. (Contributed by Thierry Arnoux, 28-Mar-2019)

Ref Expression
Hypotheses tglng.p
|- P = ( Base ` G )
tglng.l
|- L = ( LineG ` G )
tglng.i
|- I = ( Itv ` G )
Assertion tglng
|- ( G e. TarskiG -> L = ( x e. P , y e. ( P \ { x } ) |-> { z e. P | ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) } ) )

Proof

Step Hyp Ref Expression
1 tglng.p
 |-  P = ( Base ` G )
2 tglng.l
 |-  L = ( LineG ` G )
3 tglng.i
 |-  I = ( Itv ` G )
4 df-trkg
 |-  TarskiG = ( ( TarskiGC i^i TarskiGB ) i^i ( TarskiGCB i^i { f | [. ( Base ` f ) / p ]. [. ( Itv ` f ) / i ]. ( LineG ` f ) = ( x e. p , y e. ( p \ { x } ) |-> { z e. p | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) } ) )
5 inss2
 |-  ( ( TarskiGC i^i TarskiGB ) i^i ( TarskiGCB i^i { f | [. ( Base ` f ) / p ]. [. ( Itv ` f ) / i ]. ( LineG ` f ) = ( x e. p , y e. ( p \ { x } ) |-> { z e. p | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) } ) ) C_ ( TarskiGCB i^i { f | [. ( Base ` f ) / p ]. [. ( Itv ` f ) / i ]. ( LineG ` f ) = ( x e. p , y e. ( p \ { x } ) |-> { z e. p | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) } )
6 inss2
 |-  ( TarskiGCB i^i { f | [. ( Base ` f ) / p ]. [. ( Itv ` f ) / i ]. ( LineG ` f ) = ( x e. p , y e. ( p \ { x } ) |-> { z e. p | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) } ) C_ { f | [. ( Base ` f ) / p ]. [. ( Itv ` f ) / i ]. ( LineG ` f ) = ( x e. p , y e. ( p \ { x } ) |-> { z e. p | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) }
7 5 6 sstri
 |-  ( ( TarskiGC i^i TarskiGB ) i^i ( TarskiGCB i^i { f | [. ( Base ` f ) / p ]. [. ( Itv ` f ) / i ]. ( LineG ` f ) = ( x e. p , y e. ( p \ { x } ) |-> { z e. p | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) } ) ) C_ { f | [. ( Base ` f ) / p ]. [. ( Itv ` f ) / i ]. ( LineG ` f ) = ( x e. p , y e. ( p \ { x } ) |-> { z e. p | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) }
8 4 7 eqsstri
 |-  TarskiG C_ { f | [. ( Base ` f ) / p ]. [. ( Itv ` f ) / i ]. ( LineG ` f ) = ( x e. p , y e. ( p \ { x } ) |-> { z e. p | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) }
9 8 sseli
 |-  ( G e. TarskiG -> G e. { f | [. ( Base ` f ) / p ]. [. ( Itv ` f ) / i ]. ( LineG ` f ) = ( x e. p , y e. ( p \ { x } ) |-> { z e. p | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) } )
10 eqid
 |-  ( dist ` G ) = ( dist ` G )
11 1 10 3 istrkgl
 |-  ( G e. { f | [. ( Base ` f ) / p ]. [. ( Itv ` f ) / i ]. ( LineG ` f ) = ( x e. p , y e. ( p \ { x } ) |-> { z e. p | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) } <-> ( G e. _V /\ ( LineG ` G ) = ( x e. P , y e. ( P \ { x } ) |-> { z e. P | ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) } ) ) )
12 11 simprbi
 |-  ( G e. { f | [. ( Base ` f ) / p ]. [. ( Itv ` f ) / i ]. ( LineG ` f ) = ( x e. p , y e. ( p \ { x } ) |-> { z e. p | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) } -> ( LineG ` G ) = ( x e. P , y e. ( P \ { x } ) |-> { z e. P | ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) } ) )
13 2 12 syl5eq
 |-  ( G e. { f | [. ( Base ` f ) / p ]. [. ( Itv ` f ) / i ]. ( LineG ` f ) = ( x e. p , y e. ( p \ { x } ) |-> { z e. p | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) } -> L = ( x e. P , y e. ( P \ { x } ) |-> { z e. P | ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) } ) )
14 9 13 syl
 |-  ( G e. TarskiG -> L = ( x e. P , y e. ( P \ { x } ) |-> { z e. P | ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) } ) )