Metamath Proof Explorer


Theorem tgpmulg2

Description: In a topological monoid, the group multiple function is jointly continuous (although this is not saying much as one of the factors is discrete). Use zdis to write the left topology as a subset of the complex numbers. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypotheses tgpmulg.j
|- J = ( TopOpen ` G )
tgpmulg.t
|- .x. = ( .g ` G )
Assertion tgpmulg2
|- ( G e. TopGrp -> .x. e. ( ( ~P ZZ tX J ) Cn J ) )

Proof

Step Hyp Ref Expression
1 tgpmulg.j
 |-  J = ( TopOpen ` G )
2 tgpmulg.t
 |-  .x. = ( .g ` G )
3 zex
 |-  ZZ e. _V
4 3 a1i
 |-  ( G e. TopGrp -> ZZ e. _V )
5 eqid
 |-  ( Base ` G ) = ( Base ` G )
6 1 5 tgptopon
 |-  ( G e. TopGrp -> J e. ( TopOn ` ( Base ` G ) ) )
7 topontop
 |-  ( J e. ( TopOn ` ( Base ` G ) ) -> J e. Top )
8 6 7 syl
 |-  ( G e. TopGrp -> J e. Top )
9 5 2 mulgfn
 |-  .x. Fn ( ZZ X. ( Base ` G ) )
10 9 a1i
 |-  ( G e. TopGrp -> .x. Fn ( ZZ X. ( Base ` G ) ) )
11 1 2 5 tgpmulg
 |-  ( ( G e. TopGrp /\ n e. ZZ ) -> ( x e. ( Base ` G ) |-> ( n .x. x ) ) e. ( J Cn J ) )
12 4 6 8 10 11 txdis1cn
 |-  ( G e. TopGrp -> .x. e. ( ( ~P ZZ tX J ) Cn J ) )