Step |
Hyp |
Ref |
Expression |
1 |
|
tgpmulg.j |
|- J = ( TopOpen ` G ) |
2 |
|
tgpmulg.t |
|- .x. = ( .g ` G ) |
3 |
|
zex |
|- ZZ e. _V |
4 |
3
|
a1i |
|- ( G e. TopGrp -> ZZ e. _V ) |
5 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
6 |
1 5
|
tgptopon |
|- ( G e. TopGrp -> J e. ( TopOn ` ( Base ` G ) ) ) |
7 |
|
topontop |
|- ( J e. ( TopOn ` ( Base ` G ) ) -> J e. Top ) |
8 |
6 7
|
syl |
|- ( G e. TopGrp -> J e. Top ) |
9 |
5 2
|
mulgfn |
|- .x. Fn ( ZZ X. ( Base ` G ) ) |
10 |
9
|
a1i |
|- ( G e. TopGrp -> .x. Fn ( ZZ X. ( Base ` G ) ) ) |
11 |
1 2 5
|
tgpmulg |
|- ( ( G e. TopGrp /\ n e. ZZ ) -> ( x e. ( Base ` G ) |-> ( n .x. x ) ) e. ( J Cn J ) ) |
12 |
4 6 8 10 11
|
txdis1cn |
|- ( G e. TopGrp -> .x. e. ( ( ~P ZZ tX J ) Cn J ) ) |