Step |
Hyp |
Ref |
Expression |
1 |
|
tgpmulg.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
2 |
|
tgpmulg.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
zex |
⊢ ℤ ∈ V |
4 |
3
|
a1i |
⊢ ( 𝐺 ∈ TopGrp → ℤ ∈ V ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
6 |
1 5
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
7 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → 𝐽 ∈ Top ) |
8 |
6 7
|
syl |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ Top ) |
9 |
5 2
|
mulgfn |
⊢ · Fn ( ℤ × ( Base ‘ 𝐺 ) ) |
10 |
9
|
a1i |
⊢ ( 𝐺 ∈ TopGrp → · Fn ( ℤ × ( Base ‘ 𝐺 ) ) ) |
11 |
1 2 5
|
tgpmulg |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑛 ∈ ℤ ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑛 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
12 |
4 6 8 10 11
|
txdis1cn |
⊢ ( 𝐺 ∈ TopGrp → · ∈ ( ( 𝒫 ℤ ×t 𝐽 ) Cn 𝐽 ) ) |