Step |
Hyp |
Ref |
Expression |
1 |
|
mulgfn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgfn.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
6 |
1 3 4 5 2
|
mulgfval |
⊢ · = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑛 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |
7 |
|
fvex |
⊢ ( 0g ‘ 𝐺 ) ∈ V |
8 |
|
fvex |
⊢ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) ∈ V |
9 |
|
fvex |
⊢ ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ∈ V |
10 |
8 9
|
ifex |
⊢ if ( 0 < 𝑛 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ∈ V |
11 |
7 10
|
ifex |
⊢ if ( 𝑛 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑛 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ∈ V |
12 |
6 11
|
fnmpoi |
⊢ · Fn ( ℤ × 𝐵 ) |