Metamath Proof Explorer


Theorem mulgfvi

Description: The group multiple operation is compatible with identity-function protection. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis mulgfvi.t · = ( .g𝐺 )
Assertion mulgfvi · = ( .g ‘ ( I ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 mulgfvi.t · = ( .g𝐺 )
2 fvi ( 𝐺 ∈ V → ( I ‘ 𝐺 ) = 𝐺 )
3 2 eqcomd ( 𝐺 ∈ V → 𝐺 = ( I ‘ 𝐺 ) )
4 3 fveq2d ( 𝐺 ∈ V → ( .g𝐺 ) = ( .g ‘ ( I ‘ 𝐺 ) ) )
5 fvprc ( ¬ 𝐺 ∈ V → ( .g𝐺 ) = ∅ )
6 fvprc ( ¬ 𝐺 ∈ V → ( I ‘ 𝐺 ) = ∅ )
7 6 fveq2d ( ¬ 𝐺 ∈ V → ( .g ‘ ( I ‘ 𝐺 ) ) = ( .g ‘ ∅ ) )
8 base0 ∅ = ( Base ‘ ∅ )
9 eqid ( .g ‘ ∅ ) = ( .g ‘ ∅ )
10 8 9 mulgfn ( .g ‘ ∅ ) Fn ( ℤ × ∅ )
11 xp0 ( ℤ × ∅ ) = ∅
12 11 fneq2i ( ( .g ‘ ∅ ) Fn ( ℤ × ∅ ) ↔ ( .g ‘ ∅ ) Fn ∅ )
13 10 12 mpbi ( .g ‘ ∅ ) Fn ∅
14 fn0 ( ( .g ‘ ∅ ) Fn ∅ ↔ ( .g ‘ ∅ ) = ∅ )
15 13 14 mpbi ( .g ‘ ∅ ) = ∅
16 7 15 eqtrdi ( ¬ 𝐺 ∈ V → ( .g ‘ ( I ‘ 𝐺 ) ) = ∅ )
17 5 16 eqtr4d ( ¬ 𝐺 ∈ V → ( .g𝐺 ) = ( .g ‘ ( I ‘ 𝐺 ) ) )
18 4 17 pm2.61i ( .g𝐺 ) = ( .g ‘ ( I ‘ 𝐺 ) )
19 1 18 eqtri · = ( .g ‘ ( I ‘ 𝐺 ) )