Step |
Hyp |
Ref |
Expression |
1 |
|
mulgfvi.t |
⊢ · = ( .g ‘ 𝐺 ) |
2 |
|
fvi |
⊢ ( 𝐺 ∈ V → ( I ‘ 𝐺 ) = 𝐺 ) |
3 |
2
|
eqcomd |
⊢ ( 𝐺 ∈ V → 𝐺 = ( I ‘ 𝐺 ) ) |
4 |
3
|
fveq2d |
⊢ ( 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ( .g ‘ ( I ‘ 𝐺 ) ) ) |
5 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ∅ ) |
6 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( I ‘ 𝐺 ) = ∅ ) |
7 |
6
|
fveq2d |
⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ ( I ‘ 𝐺 ) ) = ( .g ‘ ∅ ) ) |
8 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
9 |
|
eqid |
⊢ ( .g ‘ ∅ ) = ( .g ‘ ∅ ) |
10 |
8 9
|
mulgfn |
⊢ ( .g ‘ ∅ ) Fn ( ℤ × ∅ ) |
11 |
|
xp0 |
⊢ ( ℤ × ∅ ) = ∅ |
12 |
11
|
fneq2i |
⊢ ( ( .g ‘ ∅ ) Fn ( ℤ × ∅ ) ↔ ( .g ‘ ∅ ) Fn ∅ ) |
13 |
10 12
|
mpbi |
⊢ ( .g ‘ ∅ ) Fn ∅ |
14 |
|
fn0 |
⊢ ( ( .g ‘ ∅ ) Fn ∅ ↔ ( .g ‘ ∅ ) = ∅ ) |
15 |
13 14
|
mpbi |
⊢ ( .g ‘ ∅ ) = ∅ |
16 |
7 15
|
eqtrdi |
⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ ( I ‘ 𝐺 ) ) = ∅ ) |
17 |
5 16
|
eqtr4d |
⊢ ( ¬ 𝐺 ∈ V → ( .g ‘ 𝐺 ) = ( .g ‘ ( I ‘ 𝐺 ) ) ) |
18 |
4 17
|
pm2.61i |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ ( I ‘ 𝐺 ) ) |
19 |
1 18
|
eqtri |
⊢ · = ( .g ‘ ( I ‘ 𝐺 ) ) |