| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgfvi.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 2 |  | fvi | ⊢ ( 𝐺  ∈  V  →  (  I  ‘ 𝐺 )  =  𝐺 ) | 
						
							| 3 | 2 | eqcomd | ⊢ ( 𝐺  ∈  V  →  𝐺  =  (  I  ‘ 𝐺 ) ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝐺  ∈  V  →  ( .g ‘ 𝐺 )  =  ( .g ‘ (  I  ‘ 𝐺 ) ) ) | 
						
							| 5 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( .g ‘ 𝐺 )  =  ∅ ) | 
						
							| 6 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  (  I  ‘ 𝐺 )  =  ∅ ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( ¬  𝐺  ∈  V  →  ( .g ‘ (  I  ‘ 𝐺 ) )  =  ( .g ‘ ∅ ) ) | 
						
							| 8 |  | base0 | ⊢ ∅  =  ( Base ‘ ∅ ) | 
						
							| 9 |  | eqid | ⊢ ( .g ‘ ∅ )  =  ( .g ‘ ∅ ) | 
						
							| 10 | 8 9 | mulgfn | ⊢ ( .g ‘ ∅ )  Fn  ( ℤ  ×  ∅ ) | 
						
							| 11 |  | xp0 | ⊢ ( ℤ  ×  ∅ )  =  ∅ | 
						
							| 12 | 11 | fneq2i | ⊢ ( ( .g ‘ ∅ )  Fn  ( ℤ  ×  ∅ )  ↔  ( .g ‘ ∅ )  Fn  ∅ ) | 
						
							| 13 | 10 12 | mpbi | ⊢ ( .g ‘ ∅ )  Fn  ∅ | 
						
							| 14 |  | fn0 | ⊢ ( ( .g ‘ ∅ )  Fn  ∅  ↔  ( .g ‘ ∅ )  =  ∅ ) | 
						
							| 15 | 13 14 | mpbi | ⊢ ( .g ‘ ∅ )  =  ∅ | 
						
							| 16 | 7 15 | eqtrdi | ⊢ ( ¬  𝐺  ∈  V  →  ( .g ‘ (  I  ‘ 𝐺 ) )  =  ∅ ) | 
						
							| 17 | 5 16 | eqtr4d | ⊢ ( ¬  𝐺  ∈  V  →  ( .g ‘ 𝐺 )  =  ( .g ‘ (  I  ‘ 𝐺 ) ) ) | 
						
							| 18 | 4 17 | pm2.61i | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ (  I  ‘ 𝐺 ) ) | 
						
							| 19 | 1 18 | eqtri | ⊢  ·   =  ( .g ‘ (  I  ‘ 𝐺 ) ) |