| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tmdgsum.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
| 2 |
|
tmdgsum.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 3 |
|
oveq2 |
⊢ ( 𝑤 = ∅ → ( 𝐵 ↑m 𝑤 ) = ( 𝐵 ↑m ∅ ) ) |
| 4 |
3
|
mpteq1d |
⊢ ( 𝑤 = ∅ → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) ↦ ( 𝐺 Σg 𝑥 ) ) ) |
| 5 |
|
xpeq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 × { 𝐽 } ) = ( ∅ × { 𝐽 } ) ) |
| 6 |
|
0xp |
⊢ ( ∅ × { 𝐽 } ) = ∅ |
| 7 |
5 6
|
eqtrdi |
⊢ ( 𝑤 = ∅ → ( 𝑤 × { 𝐽 } ) = ∅ ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑤 = ∅ → ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) = ( ∏t ‘ ∅ ) ) |
| 9 |
8
|
oveq1d |
⊢ ( 𝑤 = ∅ → ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) = ( ( ∏t ‘ ∅ ) Cn 𝐽 ) ) |
| 10 |
4 9
|
eleq12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ↔ ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ∅ ) Cn 𝐽 ) ) ) |
| 11 |
10
|
imbi2d |
⊢ ( 𝑤 = ∅ → ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ) ↔ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ∅ ) Cn 𝐽 ) ) ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝐵 ↑m 𝑤 ) = ( 𝐵 ↑m 𝑦 ) ) |
| 13 |
12
|
mpteq1d |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) = ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ) |
| 14 |
|
xpeq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 × { 𝐽 } ) = ( 𝑦 × { 𝐽 } ) ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝑤 = 𝑦 → ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) = ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝑤 = 𝑦 → ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) = ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 17 |
13 16
|
eleq12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ↔ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ) |
| 18 |
17
|
imbi2d |
⊢ ( 𝑤 = 𝑦 → ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ) ↔ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐵 ↑m 𝑤 ) = ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 20 |
19
|
mpteq1d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) ) |
| 21 |
|
xpeq1 |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑤 × { 𝐽 } ) = ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) |
| 22 |
21
|
fveq2d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) = ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) = ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 24 |
20 23
|
eleq12d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ↔ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ) ↔ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) ) ) |
| 26 |
|
oveq2 |
⊢ ( 𝑤 = 𝐴 → ( 𝐵 ↑m 𝑤 ) = ( 𝐵 ↑m 𝐴 ) ) |
| 27 |
26
|
mpteq1d |
⊢ ( 𝑤 = 𝐴 → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) = ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ) |
| 28 |
|
xpeq1 |
⊢ ( 𝑤 = 𝐴 → ( 𝑤 × { 𝐽 } ) = ( 𝐴 × { 𝐽 } ) ) |
| 29 |
28
|
fveq2d |
⊢ ( 𝑤 = 𝐴 → ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) = ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) ) |
| 30 |
29
|
oveq1d |
⊢ ( 𝑤 = 𝐴 → ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) = ( ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 31 |
27 30
|
eleq12d |
⊢ ( 𝑤 = 𝐴 → ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ↔ ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) Cn 𝐽 ) ) ) |
| 32 |
31
|
imbi2d |
⊢ ( 𝑤 = 𝐴 → ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑤 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑤 × { 𝐽 } ) ) Cn 𝐽 ) ) ↔ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) Cn 𝐽 ) ) ) ) |
| 33 |
|
elmapfn |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) → 𝑥 Fn ∅ ) |
| 34 |
|
fn0 |
⊢ ( 𝑥 Fn ∅ ↔ 𝑥 = ∅ ) |
| 35 |
33 34
|
sylib |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) → 𝑥 = ∅ ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) → ( 𝐺 Σg 𝑥 ) = ( 𝐺 Σg ∅ ) ) |
| 37 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 38 |
37
|
gsum0 |
⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
| 39 |
36 38
|
eqtrdi |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) → ( 𝐺 Σg 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 40 |
39
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) ↦ ( 𝐺 Σg 𝑥 ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) ↦ ( 0g ‘ 𝐺 ) ) |
| 41 |
|
0ex |
⊢ ∅ ∈ V |
| 42 |
1 2
|
tmdtopon |
⊢ ( 𝐺 ∈ TopMnd → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 44 |
6
|
fveq2i |
⊢ ( ∏t ‘ ( ∅ × { 𝐽 } ) ) = ( ∏t ‘ ∅ ) |
| 45 |
44
|
eqcomi |
⊢ ( ∏t ‘ ∅ ) = ( ∏t ‘ ( ∅ × { 𝐽 } ) ) |
| 46 |
45
|
pttoponconst |
⊢ ( ( ∅ ∈ V ∧ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) → ( ∏t ‘ ∅ ) ∈ ( TopOn ‘ ( 𝐵 ↑m ∅ ) ) ) |
| 47 |
41 43 46
|
sylancr |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( ∏t ‘ ∅ ) ∈ ( TopOn ‘ ( 𝐵 ↑m ∅ ) ) ) |
| 48 |
|
tmdmnd |
⊢ ( 𝐺 ∈ TopMnd → 𝐺 ∈ Mnd ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → 𝐺 ∈ Mnd ) |
| 50 |
2 37
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 51 |
49 50
|
syl |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 52 |
47 43 51
|
cnmptc |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) ↦ ( 0g ‘ 𝐺 ) ) ∈ ( ( ∏t ‘ ∅ ) Cn 𝐽 ) ) |
| 53 |
40 52
|
eqeltrid |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m ∅ ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ∅ ) Cn 𝐽 ) ) |
| 54 |
|
oveq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐺 Σg 𝑥 ) = ( 𝐺 Σg 𝑤 ) ) |
| 55 |
54
|
cbvmptv |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) = ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑤 ) ) |
| 56 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 57 |
|
simpl1l |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝐺 ∈ CMnd ) |
| 58 |
|
simp2l |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → 𝑦 ∈ Fin ) |
| 59 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
| 60 |
|
unfi |
⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 61 |
58 59 60
|
sylancl |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 62 |
61
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 63 |
|
elmapi |
⊢ ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) → 𝑤 : ( 𝑦 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
| 64 |
63
|
adantl |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑤 : ( 𝑦 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
| 65 |
|
fvexd |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 0g ‘ 𝐺 ) ∈ V ) |
| 66 |
64 62 65
|
fdmfifsupp |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑤 finSupp ( 0g ‘ 𝐺 ) ) |
| 67 |
|
simpl2r |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 68 |
|
disjsn |
⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) |
| 69 |
67 68
|
sylibr |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 70 |
|
eqidd |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) |
| 71 |
2 37 56 57 62 64 66 69 70
|
gsumsplit |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝐺 Σg 𝑤 ) = ( ( 𝐺 Σg ( 𝑤 ↾ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) ) ) |
| 72 |
71
|
mpteq2dva |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑤 ) ) = ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( ( 𝐺 Σg ( 𝑤 ↾ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) ) ) ) |
| 73 |
55 72
|
eqtrid |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) = ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( ( 𝐺 Σg ( 𝑤 ↾ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) ) ) ) |
| 74 |
|
simp1r |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → 𝐺 ∈ TopMnd ) |
| 75 |
74 42
|
syl |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 76 |
|
eqid |
⊢ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) = ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) |
| 77 |
76
|
pttoponconst |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) → ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ∈ ( TopOn ‘ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 78 |
61 75 77
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ∈ ( TopOn ‘ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 79 |
|
toponuni |
⊢ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ∈ ( TopOn ‘ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) = ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ) |
| 80 |
78 79
|
syl |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) = ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ) |
| 81 |
80
|
mpteq1d |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝑤 ↾ 𝑦 ) ) = ( 𝑤 ∈ ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ↦ ( 𝑤 ↾ 𝑦 ) ) ) |
| 82 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top ) |
| 83 |
74 42 82
|
3syl |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → 𝐽 ∈ Top ) |
| 84 |
|
fconst6g |
⊢ ( 𝐽 ∈ Top → ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ Top ) |
| 85 |
83 84
|
syl |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ Top ) |
| 86 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) |
| 87 |
86
|
a1i |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) |
| 88 |
|
eqid |
⊢ ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) = ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) |
| 89 |
|
xpssres |
⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ↾ 𝑦 ) = ( 𝑦 × { 𝐽 } ) ) |
| 90 |
86 89
|
ax-mp |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ↾ 𝑦 ) = ( 𝑦 × { 𝐽 } ) |
| 91 |
90
|
eqcomi |
⊢ ( 𝑦 × { 𝐽 } ) = ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ↾ 𝑦 ) |
| 92 |
91
|
fveq2i |
⊢ ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) = ( ∏t ‘ ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ↾ 𝑦 ) ) |
| 93 |
88 76 92
|
ptrescn |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ Top ∧ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑤 ∈ ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ↦ ( 𝑤 ↾ 𝑦 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) ) ) |
| 94 |
61 85 87 93
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ↦ ( 𝑤 ↾ 𝑦 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) ) ) |
| 95 |
81 94
|
eqeltrd |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝑤 ↾ 𝑦 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) ) ) |
| 96 |
|
eqid |
⊢ ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) = ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) |
| 97 |
96
|
pttoponconst |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) → ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) ∈ ( TopOn ‘ ( 𝐵 ↑m 𝑦 ) ) ) |
| 98 |
58 75 97
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) ∈ ( TopOn ‘ ( 𝐵 ↑m 𝑦 ) ) ) |
| 99 |
|
simp3 |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 100 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑤 ↾ 𝑦 ) → ( 𝐺 Σg 𝑥 ) = ( 𝐺 Σg ( 𝑤 ↾ 𝑦 ) ) ) |
| 101 |
78 95 98 99 100
|
cnmpt11 |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg ( 𝑤 ↾ 𝑦 ) ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 102 |
64
|
feqmptd |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑤 = ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 103 |
102
|
reseq1d |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝑤 ↾ { 𝑧 } ) = ( ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝑤 ‘ 𝑘 ) ) ↾ { 𝑧 } ) ) |
| 104 |
|
ssun2 |
⊢ { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) |
| 105 |
|
resmpt |
⊢ ( { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝑤 ‘ 𝑘 ) ) ↾ { 𝑧 } ) = ( 𝑘 ∈ { 𝑧 } ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 106 |
104 105
|
ax-mp |
⊢ ( ( 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝑤 ‘ 𝑘 ) ) ↾ { 𝑧 } ) = ( 𝑘 ∈ { 𝑧 } ↦ ( 𝑤 ‘ 𝑘 ) ) |
| 107 |
103 106
|
eqtrdi |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝑤 ↾ { 𝑧 } ) = ( 𝑘 ∈ { 𝑧 } ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
| 108 |
107
|
oveq2d |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) = ( 𝐺 Σg ( 𝑘 ∈ { 𝑧 } ↦ ( 𝑤 ‘ 𝑘 ) ) ) ) |
| 109 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
| 110 |
57 109
|
syl |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝐺 ∈ Mnd ) |
| 111 |
|
vex |
⊢ 𝑧 ∈ V |
| 112 |
111
|
a1i |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑧 ∈ V ) |
| 113 |
|
vsnid |
⊢ 𝑧 ∈ { 𝑧 } |
| 114 |
|
elun2 |
⊢ ( 𝑧 ∈ { 𝑧 } → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 115 |
113 114
|
mp1i |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 116 |
64 115
|
ffvelcdmd |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝑤 ‘ 𝑧 ) ∈ 𝐵 ) |
| 117 |
|
fveq2 |
⊢ ( 𝑘 = 𝑧 → ( 𝑤 ‘ 𝑘 ) = ( 𝑤 ‘ 𝑧 ) ) |
| 118 |
2 117
|
gsumsn |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑧 ∈ V ∧ ( 𝑤 ‘ 𝑧 ) ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑧 } ↦ ( 𝑤 ‘ 𝑘 ) ) ) = ( 𝑤 ‘ 𝑧 ) ) |
| 119 |
110 112 116 118
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑧 } ↦ ( 𝑤 ‘ 𝑘 ) ) ) = ( 𝑤 ‘ 𝑧 ) ) |
| 120 |
108 119
|
eqtrd |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) ∧ 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ) → ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) = ( 𝑤 ‘ 𝑧 ) ) |
| 121 |
120
|
mpteq2dva |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) ) = ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝑤 ‘ 𝑧 ) ) ) |
| 122 |
80
|
mpteq1d |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝑤 ‘ 𝑧 ) ) = ( 𝑤 ∈ ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ↦ ( 𝑤 ‘ 𝑧 ) ) ) |
| 123 |
113 114
|
mp1i |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 124 |
88 76
|
ptpjcn |
⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) : ( 𝑦 ∪ { 𝑧 } ) ⟶ Top ∧ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑤 ∈ ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ↦ ( 𝑤 ‘ 𝑧 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ‘ 𝑧 ) ) ) |
| 125 |
61 85 123 124
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ∪ ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) ↦ ( 𝑤 ‘ 𝑧 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ‘ 𝑧 ) ) ) |
| 126 |
122 125
|
eqeltrd |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝑤 ‘ 𝑧 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ‘ 𝑧 ) ) ) |
| 127 |
|
fvconst2g |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ‘ 𝑧 ) = 𝐽 ) |
| 128 |
83 123 127
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ‘ 𝑧 ) = 𝐽 ) |
| 129 |
128
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn ( ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ‘ 𝑧 ) ) = ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 130 |
126 129
|
eleqtrd |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝑤 ‘ 𝑧 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 131 |
121 130
|
eqeltrd |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 132 |
1 56 74 78 101 131
|
cnmpt1plusg |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑤 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( ( 𝐺 Σg ( 𝑤 ↾ 𝑦 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑤 ↾ { 𝑧 } ) ) ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 133 |
73 132
|
eqeltrd |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 134 |
133
|
3expia |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) ) |
| 135 |
134
|
expcom |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) ) ) |
| 136 |
135
|
a2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝑦 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝑦 × { 𝐽 } ) ) Cn 𝐽 ) ) → ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m ( 𝑦 ∪ { 𝑧 } ) ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( ( 𝑦 ∪ { 𝑧 } ) × { 𝐽 } ) ) Cn 𝐽 ) ) ) ) |
| 137 |
11 18 25 32 53 136
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) Cn 𝐽 ) ) ) |
| 138 |
137
|
com12 |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ) → ( 𝐴 ∈ Fin → ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) Cn 𝐽 ) ) ) |
| 139 |
138
|
3impia |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 140 |
42 82
|
syl |
⊢ ( 𝐺 ∈ TopMnd → 𝐽 ∈ Top ) |
| 141 |
|
xkopt |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ) → ( 𝐽 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) ) |
| 142 |
140 141
|
sylan |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin ) → ( 𝐽 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) ) |
| 143 |
142
|
3adant1 |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin ) → ( 𝐽 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) ) |
| 144 |
143
|
oveq1d |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin ) → ( ( 𝐽 ↑ko 𝒫 𝐴 ) Cn 𝐽 ) = ( ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) Cn 𝐽 ) ) |
| 145 |
139 144
|
eleqtrrd |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin ) → ( 𝑥 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑥 ) ) ∈ ( ( 𝐽 ↑ko 𝒫 𝐴 ) Cn 𝐽 ) ) |