| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tmdgsum.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
| 2 |
|
tmdgsum.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 3 |
|
tmdgsum2.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 4 |
|
tmdgsum2.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 5 |
|
tmdgsum2.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopMnd ) |
| 6 |
|
tmdgsum2.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 7 |
|
tmdgsum2.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) |
| 8 |
|
tmdgsum2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 9 |
|
tmdgsum2.3 |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ∈ 𝑈 ) |
| 10 |
|
eqid |
⊢ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) = ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) |
| 11 |
10
|
mptpreima |
⊢ ( ◡ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) “ 𝑈 ) = { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } |
| 12 |
1 2
|
tmdgsum |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin ) → ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) ∈ ( ( 𝐽 ↑ko 𝒫 𝐴 ) Cn 𝐽 ) ) |
| 13 |
4 5 6 12
|
syl3anc |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) ∈ ( ( 𝐽 ↑ko 𝒫 𝐴 ) Cn 𝐽 ) ) |
| 14 |
|
cnima |
⊢ ( ( ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) ∈ ( ( 𝐽 ↑ko 𝒫 𝐴 ) Cn 𝐽 ) ∧ 𝑈 ∈ 𝐽 ) → ( ◡ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) “ 𝑈 ) ∈ ( 𝐽 ↑ko 𝒫 𝐴 ) ) |
| 15 |
13 7 14
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↦ ( 𝐺 Σg 𝑓 ) ) “ 𝑈 ) ∈ ( 𝐽 ↑ko 𝒫 𝐴 ) ) |
| 16 |
11 15
|
eqeltrrid |
⊢ ( 𝜑 → { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ∈ ( 𝐽 ↑ko 𝒫 𝐴 ) ) |
| 17 |
1 2
|
tmdtopon |
⊢ ( 𝐺 ∈ TopMnd → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 18 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top ) |
| 19 |
5 17 18
|
3syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 20 |
|
xkopt |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ) → ( 𝐽 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) ) |
| 21 |
19 6 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ↑ko 𝒫 𝐴 ) = ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) ) |
| 22 |
|
fnconstg |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → ( 𝐴 × { 𝐽 } ) Fn 𝐴 ) |
| 23 |
5 17 22
|
3syl |
⊢ ( 𝜑 → ( 𝐴 × { 𝐽 } ) Fn 𝐴 ) |
| 24 |
|
eqid |
⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } |
| 25 |
24
|
ptval |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 × { 𝐽 } ) Fn 𝐴 ) → ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 26 |
6 23 25
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ ( 𝐴 × { 𝐽 } ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 27 |
21 26
|
eqtrd |
⊢ ( 𝜑 → ( 𝐽 ↑ko 𝒫 𝐴 ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 28 |
16 27
|
eleqtrd |
⊢ ( 𝜑 → { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ∈ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
| 29 |
|
oveq2 |
⊢ ( 𝑓 = ( 𝐴 × { 𝑋 } ) → ( 𝐺 Σg 𝑓 ) = ( 𝐺 Σg ( 𝐴 × { 𝑋 } ) ) ) |
| 30 |
29
|
eleq1d |
⊢ ( 𝑓 = ( 𝐴 × { 𝑋 } ) → ( ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ↔ ( 𝐺 Σg ( 𝐴 × { 𝑋 } ) ) ∈ 𝑈 ) ) |
| 31 |
|
fconst6g |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝐴 × { 𝑋 } ) : 𝐴 ⟶ 𝐵 ) |
| 32 |
8 31
|
syl |
⊢ ( 𝜑 → ( 𝐴 × { 𝑋 } ) : 𝐴 ⟶ 𝐵 ) |
| 33 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 34 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ Fin ) → ( ( 𝐴 × { 𝑋 } ) ∈ ( 𝐵 ↑m 𝐴 ) ↔ ( 𝐴 × { 𝑋 } ) : 𝐴 ⟶ 𝐵 ) ) |
| 35 |
33 6 34
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐴 × { 𝑋 } ) ∈ ( 𝐵 ↑m 𝐴 ) ↔ ( 𝐴 × { 𝑋 } ) : 𝐴 ⟶ 𝐵 ) ) |
| 36 |
32 35
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 × { 𝑋 } ) ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 37 |
|
fconstmpt |
⊢ ( 𝐴 × { 𝑋 } ) = ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) |
| 38 |
37
|
oveq2i |
⊢ ( 𝐺 Σg ( 𝐴 × { 𝑋 } ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) |
| 39 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
| 40 |
4 39
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 41 |
2 3
|
gsumconst |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |
| 42 |
40 6 8 41
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |
| 43 |
38 42
|
eqtrid |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐴 × { 𝑋 } ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |
| 44 |
43 9
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐴 × { 𝑋 } ) ) ∈ 𝑈 ) |
| 45 |
30 36 44
|
elrabd |
⊢ ( 𝜑 → ( 𝐴 × { 𝑋 } ) ∈ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) |
| 46 |
|
tg2 |
⊢ ( ( { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ∈ ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ) ∧ ( 𝐴 × { 𝑋 } ) ∈ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( ( 𝐴 × { 𝑋 } ) ∈ 𝑡 ∧ 𝑡 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) |
| 47 |
28 45 46
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( ( 𝐴 × { 𝑋 } ) ∈ 𝑡 ∧ 𝑡 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) |
| 48 |
|
eleq2 |
⊢ ( 𝑡 = 𝑥 → ( ( 𝐴 × { 𝑋 } ) ∈ 𝑡 ↔ ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ) ) |
| 49 |
|
sseq1 |
⊢ ( 𝑡 = 𝑥 → ( 𝑡 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ↔ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) |
| 50 |
48 49
|
anbi12d |
⊢ ( 𝑡 = 𝑥 → ( ( ( 𝐴 × { 𝑋 } ) ∈ 𝑡 ∧ 𝑡 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ↔ ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) ) |
| 51 |
50
|
rexab2 |
⊢ ( ∃ 𝑡 ∈ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) } ( ( 𝐴 × { 𝑋 } ) ∈ 𝑡 ∧ 𝑡 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ↔ ∃ 𝑥 ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) ) |
| 52 |
47 51
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) ) |
| 53 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ 𝐽 ) |
| 54 |
5 17 53
|
3syl |
⊢ ( 𝜑 → 𝐵 = ∪ 𝐽 ) |
| 55 |
54
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝐵 = ∪ 𝐽 ) |
| 56 |
55
|
ineq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( 𝐵 ∩ ∩ ran 𝑔 ) = ( ∪ 𝐽 ∩ ∩ ran 𝑔 ) ) |
| 57 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝐽 ∈ Top ) |
| 58 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝑔 Fn 𝐴 ) |
| 59 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) |
| 60 |
|
fvconst2g |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) = 𝐽 ) |
| 61 |
60
|
eleq2d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑦 ) ∈ 𝐽 ) ) |
| 62 |
61
|
ralbidva |
⊢ ( 𝐽 ∈ Top → ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ 𝐽 ) ) |
| 63 |
57 62
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ 𝐽 ) ) |
| 64 |
59 63
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ 𝐽 ) |
| 65 |
|
ffnfv |
⊢ ( 𝑔 : 𝐴 ⟶ 𝐽 ↔ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ 𝐽 ) ) |
| 66 |
58 64 65
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝑔 : 𝐴 ⟶ 𝐽 ) |
| 67 |
66
|
frnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ran 𝑔 ⊆ 𝐽 ) |
| 68 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝐴 ∈ Fin ) |
| 69 |
|
dffn4 |
⊢ ( 𝑔 Fn 𝐴 ↔ 𝑔 : 𝐴 –onto→ ran 𝑔 ) |
| 70 |
58 69
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝑔 : 𝐴 –onto→ ran 𝑔 ) |
| 71 |
|
fofi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑔 : 𝐴 –onto→ ran 𝑔 ) → ran 𝑔 ∈ Fin ) |
| 72 |
68 70 71
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ran 𝑔 ∈ Fin ) |
| 73 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 74 |
73
|
rintopn |
⊢ ( ( 𝐽 ∈ Top ∧ ran 𝑔 ⊆ 𝐽 ∧ ran 𝑔 ∈ Fin ) → ( ∪ 𝐽 ∩ ∩ ran 𝑔 ) ∈ 𝐽 ) |
| 75 |
57 67 72 74
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( ∪ 𝐽 ∩ ∩ ran 𝑔 ) ∈ 𝐽 ) |
| 76 |
56 75
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( 𝐵 ∩ ∩ ran 𝑔 ) ∈ 𝐽 ) |
| 77 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝑋 ∈ 𝐵 ) |
| 78 |
|
fconstmpt |
⊢ ( 𝐴 × { 𝑋 } ) = ( 𝑦 ∈ 𝐴 ↦ 𝑋 ) |
| 79 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) |
| 80 |
78 79
|
eqeltrrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( 𝑦 ∈ 𝐴 ↦ 𝑋 ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) |
| 81 |
|
mptelixpg |
⊢ ( 𝐴 ∈ Fin → ( ( 𝑦 ∈ 𝐴 ↦ 𝑋 ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 𝑋 ∈ ( 𝑔 ‘ 𝑦 ) ) ) |
| 82 |
68 81
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( ( 𝑦 ∈ 𝐴 ↦ 𝑋 ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 𝑋 ∈ ( 𝑔 ‘ 𝑦 ) ) ) |
| 83 |
80 82
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∀ 𝑦 ∈ 𝐴 𝑋 ∈ ( 𝑔 ‘ 𝑦 ) ) |
| 84 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝑔 ‘ 𝑦 ) → ( 𝑋 ∈ 𝑧 ↔ 𝑋 ∈ ( 𝑔 ‘ 𝑦 ) ) ) |
| 85 |
84
|
ralrn |
⊢ ( 𝑔 Fn 𝐴 → ( ∀ 𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧 ↔ ∀ 𝑦 ∈ 𝐴 𝑋 ∈ ( 𝑔 ‘ 𝑦 ) ) ) |
| 86 |
58 85
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( ∀ 𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧 ↔ ∀ 𝑦 ∈ 𝐴 𝑋 ∈ ( 𝑔 ‘ 𝑦 ) ) ) |
| 87 |
83 86
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∀ 𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧 ) |
| 88 |
|
elrint |
⊢ ( 𝑋 ∈ ( 𝐵 ∩ ∩ ran 𝑔 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧 ) ) |
| 89 |
77 87 88
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → 𝑋 ∈ ( 𝐵 ∩ ∩ ran 𝑔 ) ) |
| 90 |
33
|
inex1 |
⊢ ( 𝐵 ∩ ∩ ran 𝑔 ) ∈ V |
| 91 |
|
ixpconstg |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐵 ∩ ∩ ran 𝑔 ) ∈ V ) → X 𝑦 ∈ 𝐴 ( 𝐵 ∩ ∩ ran 𝑔 ) = ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ) |
| 92 |
68 90 91
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → X 𝑦 ∈ 𝐴 ( 𝐵 ∩ ∩ ran 𝑔 ) = ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ) |
| 93 |
|
inss2 |
⊢ ( 𝐵 ∩ ∩ ran 𝑔 ) ⊆ ∩ ran 𝑔 |
| 94 |
|
fnfvelrn |
⊢ ( ( 𝑔 Fn 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑦 ) ∈ ran 𝑔 ) |
| 95 |
|
intss1 |
⊢ ( ( 𝑔 ‘ 𝑦 ) ∈ ran 𝑔 → ∩ ran 𝑔 ⊆ ( 𝑔 ‘ 𝑦 ) ) |
| 96 |
94 95
|
syl |
⊢ ( ( 𝑔 Fn 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ∩ ran 𝑔 ⊆ ( 𝑔 ‘ 𝑦 ) ) |
| 97 |
93 96
|
sstrid |
⊢ ( ( 𝑔 Fn 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐵 ∩ ∩ ran 𝑔 ) ⊆ ( 𝑔 ‘ 𝑦 ) ) |
| 98 |
97
|
ralrimiva |
⊢ ( 𝑔 Fn 𝐴 → ∀ 𝑦 ∈ 𝐴 ( 𝐵 ∩ ∩ ran 𝑔 ) ⊆ ( 𝑔 ‘ 𝑦 ) ) |
| 99 |
|
ss2ixp |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝐵 ∩ ∩ ran 𝑔 ) ⊆ ( 𝑔 ‘ 𝑦 ) → X 𝑦 ∈ 𝐴 ( 𝐵 ∩ ∩ ran 𝑔 ) ⊆ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) |
| 100 |
58 98 99
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → X 𝑦 ∈ 𝐴 ( 𝐵 ∩ ∩ ran 𝑔 ) ⊆ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) |
| 101 |
92 100
|
eqsstrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ⊆ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) |
| 102 |
|
ssrab |
⊢ ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ↔ ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ ( 𝐵 ↑m 𝐴 ) ∧ ∀ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) |
| 103 |
102
|
simprbi |
⊢ ( X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } → ∀ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) |
| 104 |
103
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∀ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) |
| 105 |
|
ssralv |
⊢ ( ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ⊆ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ∀ 𝑓 ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 → ∀ 𝑓 ∈ ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) |
| 106 |
101 104 105
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∀ 𝑓 ∈ ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) |
| 107 |
|
eleq2 |
⊢ ( 𝑢 = ( 𝐵 ∩ ∩ ran 𝑔 ) → ( 𝑋 ∈ 𝑢 ↔ 𝑋 ∈ ( 𝐵 ∩ ∩ ran 𝑔 ) ) ) |
| 108 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝐵 ∩ ∩ ran 𝑔 ) → ( 𝑢 ↑m 𝐴 ) = ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ) |
| 109 |
108
|
raleqdv |
⊢ ( 𝑢 = ( 𝐵 ∩ ∩ ran 𝑔 ) → ( ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ↔ ∀ 𝑓 ∈ ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) |
| 110 |
107 109
|
anbi12d |
⊢ ( 𝑢 = ( 𝐵 ∩ ∩ ran 𝑔 ) → ( ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ↔ ( 𝑋 ∈ ( 𝐵 ∩ ∩ ran 𝑔 ) ∧ ∀ 𝑓 ∈ ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) |
| 111 |
110
|
rspcev |
⊢ ( ( ( 𝐵 ∩ ∩ ran 𝑔 ) ∈ 𝐽 ∧ ( 𝑋 ∈ ( 𝐵 ∩ ∩ ran 𝑔 ) ∧ ∀ 𝑓 ∈ ( ( 𝐵 ∩ ∩ ran 𝑔 ) ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) |
| 112 |
76 89 106 111
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) |
| 113 |
112
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) → ( ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) |
| 114 |
113
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) → ( ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) |
| 115 |
|
eleq2 |
⊢ ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ↔ ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ) |
| 116 |
|
sseq1 |
⊢ ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ↔ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) |
| 117 |
115 116
|
anbi12d |
⊢ ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ↔ ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) ) |
| 118 |
117
|
imbi1d |
⊢ ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ↔ ( ( ( 𝐴 × { 𝑋 } ) ∈ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∧ X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) ) |
| 119 |
114 118
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ) → ( 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) → ( ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) ) |
| 120 |
119
|
expimpd |
⊢ ( 𝜑 → ( ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → ( ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) ) |
| 121 |
120
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) → ( ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) ) |
| 122 |
121
|
impd |
⊢ ( 𝜑 → ( ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) |
| 123 |
122
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ( ∃ 𝑔 ( ( 𝑔 Fn 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝐴 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝐴 × { 𝐽 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ) ∧ ( ( 𝐴 × { 𝑋 } ) ∈ 𝑥 ∧ 𝑥 ⊆ { 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∣ ( 𝐺 Σg 𝑓 ) ∈ 𝑈 } ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) ) |
| 124 |
52 123
|
mpd |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ ∀ 𝑓 ∈ ( 𝑢 ↑m 𝐴 ) ( 𝐺 Σg 𝑓 ) ∈ 𝑈 ) ) |