Step |
Hyp |
Ref |
Expression |
1 |
|
tmdgsum.j |
|
2 |
|
tmdgsum.b |
|
3 |
|
oveq2 |
|
4 |
3
|
mpteq1d |
|
5 |
|
xpeq1 |
|
6 |
|
0xp |
|
7 |
5 6
|
eqtrdi |
|
8 |
7
|
fveq2d |
|
9 |
8
|
oveq1d |
|
10 |
4 9
|
eleq12d |
|
11 |
10
|
imbi2d |
|
12 |
|
oveq2 |
|
13 |
12
|
mpteq1d |
|
14 |
|
xpeq1 |
|
15 |
14
|
fveq2d |
|
16 |
15
|
oveq1d |
|
17 |
13 16
|
eleq12d |
|
18 |
17
|
imbi2d |
|
19 |
|
oveq2 |
|
20 |
19
|
mpteq1d |
|
21 |
|
xpeq1 |
|
22 |
21
|
fveq2d |
|
23 |
22
|
oveq1d |
|
24 |
20 23
|
eleq12d |
|
25 |
24
|
imbi2d |
|
26 |
|
oveq2 |
|
27 |
26
|
mpteq1d |
|
28 |
|
xpeq1 |
|
29 |
28
|
fveq2d |
|
30 |
29
|
oveq1d |
|
31 |
27 30
|
eleq12d |
|
32 |
31
|
imbi2d |
|
33 |
|
elmapfn |
|
34 |
|
fn0 |
|
35 |
33 34
|
sylib |
|
36 |
35
|
oveq2d |
|
37 |
|
eqid |
|
38 |
37
|
gsum0 |
|
39 |
36 38
|
eqtrdi |
|
40 |
39
|
mpteq2ia |
|
41 |
|
0ex |
|
42 |
1 2
|
tmdtopon |
|
43 |
42
|
adantl |
|
44 |
6
|
fveq2i |
|
45 |
44
|
eqcomi |
|
46 |
45
|
pttoponconst |
|
47 |
41 43 46
|
sylancr |
|
48 |
|
tmdmnd |
|
49 |
48
|
adantl |
|
50 |
2 37
|
mndidcl |
|
51 |
49 50
|
syl |
|
52 |
47 43 51
|
cnmptc |
|
53 |
40 52
|
eqeltrid |
|
54 |
|
oveq2 |
|
55 |
54
|
cbvmptv |
|
56 |
|
eqid |
|
57 |
|
simpl1l |
|
58 |
|
simp2l |
|
59 |
|
snfi |
|
60 |
|
unfi |
|
61 |
58 59 60
|
sylancl |
|
62 |
61
|
adantr |
|
63 |
|
elmapi |
|
64 |
63
|
adantl |
|
65 |
|
fvexd |
|
66 |
64 62 65
|
fdmfifsupp |
|
67 |
|
simpl2r |
|
68 |
|
disjsn |
|
69 |
67 68
|
sylibr |
|
70 |
|
eqidd |
|
71 |
2 37 56 57 62 64 66 69 70
|
gsumsplit |
|
72 |
71
|
mpteq2dva |
|
73 |
55 72
|
eqtrid |
|
74 |
|
simp1r |
|
75 |
74 42
|
syl |
|
76 |
|
eqid |
|
77 |
76
|
pttoponconst |
|
78 |
61 75 77
|
syl2anc |
|
79 |
|
toponuni |
|
80 |
78 79
|
syl |
|
81 |
80
|
mpteq1d |
|
82 |
|
topontop |
|
83 |
74 42 82
|
3syl |
|
84 |
|
fconst6g |
|
85 |
83 84
|
syl |
|
86 |
|
ssun1 |
|
87 |
86
|
a1i |
|
88 |
|
eqid |
|
89 |
|
xpssres |
|
90 |
86 89
|
ax-mp |
|
91 |
90
|
eqcomi |
|
92 |
91
|
fveq2i |
|
93 |
88 76 92
|
ptrescn |
|
94 |
61 85 87 93
|
syl3anc |
|
95 |
81 94
|
eqeltrd |
|
96 |
|
eqid |
|
97 |
96
|
pttoponconst |
|
98 |
58 75 97
|
syl2anc |
|
99 |
|
simp3 |
|
100 |
|
oveq2 |
|
101 |
78 95 98 99 100
|
cnmpt11 |
|
102 |
64
|
feqmptd |
|
103 |
102
|
reseq1d |
|
104 |
|
ssun2 |
|
105 |
|
resmpt |
|
106 |
104 105
|
ax-mp |
|
107 |
103 106
|
eqtrdi |
|
108 |
107
|
oveq2d |
|
109 |
|
cmnmnd |
|
110 |
57 109
|
syl |
|
111 |
|
vex |
|
112 |
111
|
a1i |
|
113 |
|
vsnid |
|
114 |
|
elun2 |
|
115 |
113 114
|
mp1i |
|
116 |
64 115
|
ffvelrnd |
|
117 |
|
fveq2 |
|
118 |
2 117
|
gsumsn |
|
119 |
110 112 116 118
|
syl3anc |
|
120 |
108 119
|
eqtrd |
|
121 |
120
|
mpteq2dva |
|
122 |
80
|
mpteq1d |
|
123 |
113 114
|
mp1i |
|
124 |
88 76
|
ptpjcn |
|
125 |
61 85 123 124
|
syl3anc |
|
126 |
122 125
|
eqeltrd |
|
127 |
|
fvconst2g |
|
128 |
83 123 127
|
syl2anc |
|
129 |
128
|
oveq2d |
|
130 |
126 129
|
eleqtrd |
|
131 |
121 130
|
eqeltrd |
|
132 |
1 56 74 78 101 131
|
cnmpt1plusg |
|
133 |
73 132
|
eqeltrd |
|
134 |
133
|
3expia |
|
135 |
134
|
expcom |
|
136 |
135
|
a2d |
|
137 |
11 18 25 32 53 136
|
findcard2s |
|
138 |
137
|
com12 |
|
139 |
138
|
3impia |
|
140 |
42 82
|
syl |
|
141 |
|
xkopt |
|
142 |
140 141
|
sylan |
|
143 |
142
|
3adant1 |
|
144 |
143
|
oveq1d |
|
145 |
139 144
|
eleqtrrd |
|