| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tmdgsum.j |
|
| 2 |
|
tmdgsum.b |
|
| 3 |
|
oveq2 |
|
| 4 |
3
|
mpteq1d |
|
| 5 |
|
xpeq1 |
|
| 6 |
|
0xp |
|
| 7 |
5 6
|
eqtrdi |
|
| 8 |
7
|
fveq2d |
|
| 9 |
8
|
oveq1d |
|
| 10 |
4 9
|
eleq12d |
|
| 11 |
10
|
imbi2d |
|
| 12 |
|
oveq2 |
|
| 13 |
12
|
mpteq1d |
|
| 14 |
|
xpeq1 |
|
| 15 |
14
|
fveq2d |
|
| 16 |
15
|
oveq1d |
|
| 17 |
13 16
|
eleq12d |
|
| 18 |
17
|
imbi2d |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
mpteq1d |
|
| 21 |
|
xpeq1 |
|
| 22 |
21
|
fveq2d |
|
| 23 |
22
|
oveq1d |
|
| 24 |
20 23
|
eleq12d |
|
| 25 |
24
|
imbi2d |
|
| 26 |
|
oveq2 |
|
| 27 |
26
|
mpteq1d |
|
| 28 |
|
xpeq1 |
|
| 29 |
28
|
fveq2d |
|
| 30 |
29
|
oveq1d |
|
| 31 |
27 30
|
eleq12d |
|
| 32 |
31
|
imbi2d |
|
| 33 |
|
elmapfn |
|
| 34 |
|
fn0 |
|
| 35 |
33 34
|
sylib |
|
| 36 |
35
|
oveq2d |
|
| 37 |
|
eqid |
|
| 38 |
37
|
gsum0 |
|
| 39 |
36 38
|
eqtrdi |
|
| 40 |
39
|
mpteq2ia |
|
| 41 |
|
0ex |
|
| 42 |
1 2
|
tmdtopon |
|
| 43 |
42
|
adantl |
|
| 44 |
6
|
fveq2i |
|
| 45 |
44
|
eqcomi |
|
| 46 |
45
|
pttoponconst |
|
| 47 |
41 43 46
|
sylancr |
|
| 48 |
|
tmdmnd |
|
| 49 |
48
|
adantl |
|
| 50 |
2 37
|
mndidcl |
|
| 51 |
49 50
|
syl |
|
| 52 |
47 43 51
|
cnmptc |
|
| 53 |
40 52
|
eqeltrid |
|
| 54 |
|
oveq2 |
|
| 55 |
54
|
cbvmptv |
|
| 56 |
|
eqid |
|
| 57 |
|
simpl1l |
|
| 58 |
|
simp2l |
|
| 59 |
|
snfi |
|
| 60 |
|
unfi |
|
| 61 |
58 59 60
|
sylancl |
|
| 62 |
61
|
adantr |
|
| 63 |
|
elmapi |
|
| 64 |
63
|
adantl |
|
| 65 |
|
fvexd |
|
| 66 |
64 62 65
|
fdmfifsupp |
|
| 67 |
|
simpl2r |
|
| 68 |
|
disjsn |
|
| 69 |
67 68
|
sylibr |
|
| 70 |
|
eqidd |
|
| 71 |
2 37 56 57 62 64 66 69 70
|
gsumsplit |
|
| 72 |
71
|
mpteq2dva |
|
| 73 |
55 72
|
eqtrid |
|
| 74 |
|
simp1r |
|
| 75 |
74 42
|
syl |
|
| 76 |
|
eqid |
|
| 77 |
76
|
pttoponconst |
|
| 78 |
61 75 77
|
syl2anc |
|
| 79 |
|
toponuni |
|
| 80 |
78 79
|
syl |
|
| 81 |
80
|
mpteq1d |
|
| 82 |
|
topontop |
|
| 83 |
74 42 82
|
3syl |
|
| 84 |
|
fconst6g |
|
| 85 |
83 84
|
syl |
|
| 86 |
|
ssun1 |
|
| 87 |
86
|
a1i |
|
| 88 |
|
eqid |
|
| 89 |
|
xpssres |
|
| 90 |
86 89
|
ax-mp |
|
| 91 |
90
|
eqcomi |
|
| 92 |
91
|
fveq2i |
|
| 93 |
88 76 92
|
ptrescn |
|
| 94 |
61 85 87 93
|
syl3anc |
|
| 95 |
81 94
|
eqeltrd |
|
| 96 |
|
eqid |
|
| 97 |
96
|
pttoponconst |
|
| 98 |
58 75 97
|
syl2anc |
|
| 99 |
|
simp3 |
|
| 100 |
|
oveq2 |
|
| 101 |
78 95 98 99 100
|
cnmpt11 |
|
| 102 |
64
|
feqmptd |
|
| 103 |
102
|
reseq1d |
|
| 104 |
|
ssun2 |
|
| 105 |
|
resmpt |
|
| 106 |
104 105
|
ax-mp |
|
| 107 |
103 106
|
eqtrdi |
|
| 108 |
107
|
oveq2d |
|
| 109 |
|
cmnmnd |
|
| 110 |
57 109
|
syl |
|
| 111 |
|
vex |
|
| 112 |
111
|
a1i |
|
| 113 |
|
vsnid |
|
| 114 |
|
elun2 |
|
| 115 |
113 114
|
mp1i |
|
| 116 |
64 115
|
ffvelcdmd |
|
| 117 |
|
fveq2 |
|
| 118 |
2 117
|
gsumsn |
|
| 119 |
110 112 116 118
|
syl3anc |
|
| 120 |
108 119
|
eqtrd |
|
| 121 |
120
|
mpteq2dva |
|
| 122 |
80
|
mpteq1d |
|
| 123 |
113 114
|
mp1i |
|
| 124 |
88 76
|
ptpjcn |
|
| 125 |
61 85 123 124
|
syl3anc |
|
| 126 |
122 125
|
eqeltrd |
|
| 127 |
|
fvconst2g |
|
| 128 |
83 123 127
|
syl2anc |
|
| 129 |
128
|
oveq2d |
|
| 130 |
126 129
|
eleqtrd |
|
| 131 |
121 130
|
eqeltrd |
|
| 132 |
1 56 74 78 101 131
|
cnmpt1plusg |
|
| 133 |
73 132
|
eqeltrd |
|
| 134 |
133
|
3expia |
|
| 135 |
134
|
expcom |
|
| 136 |
135
|
a2d |
|
| 137 |
11 18 25 32 53 136
|
findcard2s |
|
| 138 |
137
|
com12 |
|
| 139 |
138
|
3impia |
|
| 140 |
42 82
|
syl |
|
| 141 |
|
xkopt |
|
| 142 |
140 141
|
sylan |
|
| 143 |
142
|
3adant1 |
|
| 144 |
143
|
oveq1d |
|
| 145 |
139 144
|
eleqtrrd |
|