Description: Third congruence theorem: SSS. Theorem 11.51 of Schwabhauser p. 109. (Contributed by Thierry Arnoux, 1-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgsas.p | |- P = ( Base ` G ) | |
| tgsas.m | |- .- = ( dist ` G ) | ||
| tgsas.i | |- I = ( Itv ` G ) | ||
| tgsas.g | |- ( ph -> G e. TarskiG ) | ||
| tgsas.a | |- ( ph -> A e. P ) | ||
| tgsas.b | |- ( ph -> B e. P ) | ||
| tgsas.c | |- ( ph -> C e. P ) | ||
| tgsas.d | |- ( ph -> D e. P ) | ||
| tgsas.e | |- ( ph -> E e. P ) | ||
| tgsas.f | |- ( ph -> F e. P ) | ||
| tgsss.1 | |- ( ph -> ( A .- B ) = ( D .- E ) ) | ||
| tgsss.2 | |- ( ph -> ( B .- C ) = ( E .- F ) ) | ||
| tgsss.3 | |- ( ph -> ( C .- A ) = ( F .- D ) ) | ||
| tgsss.4 | |- ( ph -> A =/= B ) | ||
| tgsss.5 | |- ( ph -> B =/= C ) | ||
| tgsss.6 | |- ( ph -> C =/= A ) | ||
| Assertion | tgsss3 | |- ( ph -> <" B C A "> ( cgrA ` G ) <" E F D "> ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tgsas.p | |- P = ( Base ` G ) | |
| 2 | tgsas.m | |- .- = ( dist ` G ) | |
| 3 | tgsas.i | |- I = ( Itv ` G ) | |
| 4 | tgsas.g | |- ( ph -> G e. TarskiG ) | |
| 5 | tgsas.a | |- ( ph -> A e. P ) | |
| 6 | tgsas.b | |- ( ph -> B e. P ) | |
| 7 | tgsas.c | |- ( ph -> C e. P ) | |
| 8 | tgsas.d | |- ( ph -> D e. P ) | |
| 9 | tgsas.e | |- ( ph -> E e. P ) | |
| 10 | tgsas.f | |- ( ph -> F e. P ) | |
| 11 | tgsss.1 | |- ( ph -> ( A .- B ) = ( D .- E ) ) | |
| 12 | tgsss.2 | |- ( ph -> ( B .- C ) = ( E .- F ) ) | |
| 13 | tgsss.3 | |- ( ph -> ( C .- A ) = ( F .- D ) ) | |
| 14 | tgsss.4 | |- ( ph -> A =/= B ) | |
| 15 | tgsss.5 | |- ( ph -> B =/= C ) | |
| 16 | tgsss.6 | |- ( ph -> C =/= A ) | |
| 17 | 1 2 3 4 6 7 5 9 10 8 12 13 11 15 16 14 | tgsss1 | |- ( ph -> <" B C A "> ( cgrA ` G ) <" E F D "> ) |