| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfcgrg2.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | dfcgrg2.m |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | dfcgrg2.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 4 |  | dfcgrg2.a |  |-  ( ph -> A e. P ) | 
						
							| 5 |  | dfcgrg2.b |  |-  ( ph -> B e. P ) | 
						
							| 6 |  | dfcgrg2.c |  |-  ( ph -> C e. P ) | 
						
							| 7 |  | dfcgrg2.d |  |-  ( ph -> D e. P ) | 
						
							| 8 |  | dfcgrg2.e |  |-  ( ph -> E e. P ) | 
						
							| 9 |  | dfcgrg2.f |  |-  ( ph -> F e. P ) | 
						
							| 10 |  | dfcgrg2.1 |  |-  ( ph -> A =/= B ) | 
						
							| 11 |  | dfcgrg2.2 |  |-  ( ph -> B =/= C ) | 
						
							| 12 |  | dfcgrg2.3 |  |-  ( ph -> C =/= A ) | 
						
							| 13 |  | eqid |  |-  ( Itv ` G ) = ( Itv ` G ) | 
						
							| 14 | 3 | adantr |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> G e. TarskiG ) | 
						
							| 15 | 4 | adantr |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> A e. P ) | 
						
							| 16 | 5 | adantr |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> B e. P ) | 
						
							| 17 | 6 | adantr |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> C e. P ) | 
						
							| 18 | 7 | adantr |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> D e. P ) | 
						
							| 19 | 8 | adantr |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> E e. P ) | 
						
							| 20 | 9 | adantr |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> F e. P ) | 
						
							| 21 |  | eqid |  |-  ( cgrG ` G ) = ( cgrG ` G ) | 
						
							| 22 | 1 2 21 3 4 5 6 7 8 9 | trgcgrg |  |-  ( ph -> ( <" A B C "> ( cgrG ` G ) <" D E F "> <-> ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) ) ) | 
						
							| 23 | 22 | biimpa |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) ) | 
						
							| 24 | 23 | simp1d |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> ( A .- B ) = ( D .- E ) ) | 
						
							| 25 | 23 | simp2d |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> ( B .- C ) = ( E .- F ) ) | 
						
							| 26 | 23 | simp3d |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> ( C .- A ) = ( F .- D ) ) | 
						
							| 27 | 10 | adantr |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> A =/= B ) | 
						
							| 28 | 11 | adantr |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> B =/= C ) | 
						
							| 29 | 12 | adantr |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> C =/= A ) | 
						
							| 30 | 1 2 13 14 15 16 17 18 19 20 24 25 26 27 28 29 | tgsss1 |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> <" A B C "> ( cgrA ` G ) <" D E F "> ) | 
						
							| 31 | 1 2 13 14 17 15 16 20 18 19 26 24 25 29 27 28 | tgsss1 |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> <" C A B "> ( cgrA ` G ) <" F D E "> ) | 
						
							| 32 | 1 2 13 14 16 17 15 19 20 18 25 26 24 28 29 27 | tgsss1 |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> <" B C A "> ( cgrA ` G ) <" E F D "> ) | 
						
							| 33 | 30 31 32 | 3jca |  |-  ( ( ph /\ <" A B C "> ( cgrG ` G ) <" D E F "> ) -> ( <" A B C "> ( cgrA ` G ) <" D E F "> /\ <" C A B "> ( cgrA ` G ) <" F D E "> /\ <" B C A "> ( cgrA ` G ) <" E F D "> ) ) | 
						
							| 34 | 33 | ex |  |-  ( ph -> ( <" A B C "> ( cgrG ` G ) <" D E F "> -> ( <" A B C "> ( cgrA ` G ) <" D E F "> /\ <" C A B "> ( cgrA ` G ) <" F D E "> /\ <" B C A "> ( cgrA ` G ) <" E F D "> ) ) ) | 
						
							| 35 | 34 | pm4.71d |  |-  ( ph -> ( <" A B C "> ( cgrG ` G ) <" D E F "> <-> ( <" A B C "> ( cgrG ` G ) <" D E F "> /\ ( <" A B C "> ( cgrA ` G ) <" D E F "> /\ <" C A B "> ( cgrA ` G ) <" F D E "> /\ <" B C A "> ( cgrA ` G ) <" E F D "> ) ) ) ) | 
						
							| 36 | 22 | anbi1d |  |-  ( ph -> ( ( <" A B C "> ( cgrG ` G ) <" D E F "> /\ ( <" A B C "> ( cgrA ` G ) <" D E F "> /\ <" C A B "> ( cgrA ` G ) <" F D E "> /\ <" B C A "> ( cgrA ` G ) <" E F D "> ) ) <-> ( ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) /\ ( <" A B C "> ( cgrA ` G ) <" D E F "> /\ <" C A B "> ( cgrA ` G ) <" F D E "> /\ <" B C A "> ( cgrA ` G ) <" E F D "> ) ) ) ) | 
						
							| 37 | 35 36 | bitrd |  |-  ( ph -> ( <" A B C "> ( cgrG ` G ) <" D E F "> <-> ( ( ( A .- B ) = ( D .- E ) /\ ( B .- C ) = ( E .- F ) /\ ( C .- A ) = ( F .- D ) ) /\ ( <" A B C "> ( cgrA ` G ) <" D E F "> /\ <" C A B "> ( cgrA ` G ) <" F D E "> /\ <" B C A "> ( cgrA ` G ) <" E F D "> ) ) ) ) |