| Step | Hyp | Ref | Expression | 
						
							| 1 |  | thlval.k |  |-  K = ( toHL ` W ) | 
						
							| 2 |  | thloc.c |  |-  ._|_ = ( ocv ` W ) | 
						
							| 3 |  | fvex |  |-  ( toInc ` ( ClSubSp ` W ) ) e. _V | 
						
							| 4 | 2 | fvexi |  |-  ._|_ e. _V | 
						
							| 5 |  | ocid |  |-  oc = Slot ( oc ` ndx ) | 
						
							| 6 | 5 | setsid |  |-  ( ( ( toInc ` ( ClSubSp ` W ) ) e. _V /\ ._|_ e. _V ) -> ._|_ = ( oc ` ( ( toInc ` ( ClSubSp ` W ) ) sSet <. ( oc ` ndx ) , ._|_ >. ) ) ) | 
						
							| 7 | 3 4 6 | mp2an |  |-  ._|_ = ( oc ` ( ( toInc ` ( ClSubSp ` W ) ) sSet <. ( oc ` ndx ) , ._|_ >. ) ) | 
						
							| 8 |  | eqid |  |-  ( ClSubSp ` W ) = ( ClSubSp ` W ) | 
						
							| 9 |  | eqid |  |-  ( toInc ` ( ClSubSp ` W ) ) = ( toInc ` ( ClSubSp ` W ) ) | 
						
							| 10 | 1 8 9 2 | thlval |  |-  ( W e. _V -> K = ( ( toInc ` ( ClSubSp ` W ) ) sSet <. ( oc ` ndx ) , ._|_ >. ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( W e. _V -> ( oc ` K ) = ( oc ` ( ( toInc ` ( ClSubSp ` W ) ) sSet <. ( oc ` ndx ) , ._|_ >. ) ) ) | 
						
							| 12 | 7 11 | eqtr4id |  |-  ( W e. _V -> ._|_ = ( oc ` K ) ) | 
						
							| 13 | 5 | str0 |  |-  (/) = ( oc ` (/) ) | 
						
							| 14 |  | fvprc |  |-  ( -. W e. _V -> ( ocv ` W ) = (/) ) | 
						
							| 15 | 2 14 | eqtrid |  |-  ( -. W e. _V -> ._|_ = (/) ) | 
						
							| 16 |  | fvprc |  |-  ( -. W e. _V -> ( toHL ` W ) = (/) ) | 
						
							| 17 | 1 16 | eqtrid |  |-  ( -. W e. _V -> K = (/) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( -. W e. _V -> ( oc ` K ) = ( oc ` (/) ) ) | 
						
							| 19 | 13 15 18 | 3eqtr4a |  |-  ( -. W e. _V -> ._|_ = ( oc ` K ) ) | 
						
							| 20 | 12 19 | pm2.61i |  |-  ._|_ = ( oc ` K ) |