Metamath Proof Explorer


Theorem thloc

Description: Orthocomplement on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015)

Ref Expression
Hypotheses thlval.k K = toHL W
thloc.c ˙ = ocv W
Assertion thloc ˙ = oc K

Proof

Step Hyp Ref Expression
1 thlval.k K = toHL W
2 thloc.c ˙ = ocv W
3 fvex toInc ClSubSp W V
4 2 fvexi ˙ V
5 ocid oc = Slot oc ndx
6 5 setsid toInc ClSubSp W V ˙ V ˙ = oc toInc ClSubSp W sSet oc ndx ˙
7 3 4 6 mp2an ˙ = oc toInc ClSubSp W sSet oc ndx ˙
8 eqid ClSubSp W = ClSubSp W
9 eqid toInc ClSubSp W = toInc ClSubSp W
10 1 8 9 2 thlval W V K = toInc ClSubSp W sSet oc ndx ˙
11 10 fveq2d W V oc K = oc toInc ClSubSp W sSet oc ndx ˙
12 7 11 eqtr4id W V ˙ = oc K
13 5 str0 = oc
14 fvprc ¬ W V ocv W =
15 2 14 syl5eq ¬ W V ˙ =
16 fvprc ¬ W V toHL W =
17 1 16 syl5eq ¬ W V K =
18 17 fveq2d ¬ W V oc K = oc
19 13 15 18 3eqtr4a ¬ W V ˙ = oc K
20 12 19 pm2.61i ˙ = oc K