Step |
Hyp |
Ref |
Expression |
1 |
|
tngngp3.t |
|- T = ( G toNrmGrp N ) |
2 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
3 |
1 2
|
tngbas |
|- ( N e. V -> ( Base ` G ) = ( Base ` T ) ) |
4 |
|
eqidd |
|- ( N e. V -> ( Base ` G ) = ( Base ` G ) ) |
5 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
6 |
1 5
|
tngplusg |
|- ( N e. V -> ( +g ` G ) = ( +g ` T ) ) |
7 |
6
|
eqcomd |
|- ( N e. V -> ( +g ` T ) = ( +g ` G ) ) |
8 |
7
|
oveqdr |
|- ( ( N e. V /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` T ) y ) = ( x ( +g ` G ) y ) ) |
9 |
3 4 8
|
grppropd |
|- ( N e. V -> ( T e. Grp <-> G e. Grp ) ) |
10 |
9
|
biimpd |
|- ( N e. V -> ( T e. Grp -> G e. Grp ) ) |
11 |
|
ngpgrp |
|- ( T e. NrmGrp -> T e. Grp ) |
12 |
10 11
|
impel |
|- ( ( N e. V /\ T e. NrmGrp ) -> G e. Grp ) |