Metamath Proof Explorer


Theorem tnggrpr

Description: If a structure equipped with a norm is a normed group, the structure itself must be a group. (Contributed by AV, 15-Oct-2021)

Ref Expression
Hypothesis tngngp3.t 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
Assertion tnggrpr ( ( 𝑁𝑉𝑇 ∈ NrmGrp ) → 𝐺 ∈ Grp )

Proof

Step Hyp Ref Expression
1 tngngp3.t 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
2 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
3 1 2 tngbas ( 𝑁𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) )
4 eqidd ( 𝑁𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) )
5 eqid ( +g𝐺 ) = ( +g𝐺 )
6 1 5 tngplusg ( 𝑁𝑉 → ( +g𝐺 ) = ( +g𝑇 ) )
7 6 eqcomd ( 𝑁𝑉 → ( +g𝑇 ) = ( +g𝐺 ) )
8 7 oveqdr ( ( 𝑁𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g𝑇 ) 𝑦 ) = ( 𝑥 ( +g𝐺 ) 𝑦 ) )
9 3 4 8 grppropd ( 𝑁𝑉 → ( 𝑇 ∈ Grp ↔ 𝐺 ∈ Grp ) )
10 9 biimpd ( 𝑁𝑉 → ( 𝑇 ∈ Grp → 𝐺 ∈ Grp ) )
11 ngpgrp ( 𝑇 ∈ NrmGrp → 𝑇 ∈ Grp )
12 10 11 impel ( ( 𝑁𝑉𝑇 ∈ NrmGrp ) → 𝐺 ∈ Grp )