| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tngngp3.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 3 |
1 2
|
tngbas |
⊢ ( 𝑁 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
| 4 |
|
eqidd |
⊢ ( 𝑁 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
| 5 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 6 |
1 5
|
tngplusg |
⊢ ( 𝑁 ∈ 𝑉 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑇 ) ) |
| 7 |
6
|
eqcomd |
⊢ ( 𝑁 ∈ 𝑉 → ( +g ‘ 𝑇 ) = ( +g ‘ 𝐺 ) ) |
| 8 |
7
|
oveqdr |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 9 |
3 4 8
|
grppropd |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑇 ∈ Grp ↔ 𝐺 ∈ Grp ) ) |
| 10 |
9
|
biimpd |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑇 ∈ Grp → 𝐺 ∈ Grp ) ) |
| 11 |
|
ngpgrp |
⊢ ( 𝑇 ∈ NrmGrp → 𝑇 ∈ Grp ) |
| 12 |
10 11
|
impel |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑇 ∈ NrmGrp ) → 𝐺 ∈ Grp ) |