| Step |
Hyp |
Ref |
Expression |
| 1 |
|
noel |
|- -. B e. (/) |
| 2 |
|
pnfxr |
|- +oo e. RR* |
| 3 |
|
xrltnr |
|- ( +oo e. RR* -> -. +oo < +oo ) |
| 4 |
2 3
|
ax-mp |
|- -. +oo < +oo |
| 5 |
|
zre |
|- ( +oo e. ZZ -> +oo e. RR ) |
| 6 |
|
ltpnf |
|- ( +oo e. RR -> +oo < +oo ) |
| 7 |
5 6
|
syl |
|- ( +oo e. ZZ -> +oo < +oo ) |
| 8 |
4 7
|
mto |
|- -. +oo e. ZZ |
| 9 |
8
|
intnan |
|- -. ( 0 e. ZZ /\ +oo e. ZZ ) |
| 10 |
|
fzf |
|- ... : ( ZZ X. ZZ ) --> ~P ZZ |
| 11 |
10
|
fdmi |
|- dom ... = ( ZZ X. ZZ ) |
| 12 |
11
|
ndmov |
|- ( -. ( 0 e. ZZ /\ +oo e. ZZ ) -> ( 0 ... +oo ) = (/) ) |
| 13 |
9 12
|
ax-mp |
|- ( 0 ... +oo ) = (/) |
| 14 |
13
|
eleq2i |
|- ( B e. ( 0 ... +oo ) <-> B e. (/) ) |
| 15 |
1 14
|
mtbir |
|- -. B e. ( 0 ... +oo ) |
| 16 |
15
|
pm2.21i |
|- ( B e. ( 0 ... +oo ) -> +oo < B ) |