Description: A topological space depends only on the base and topology components. (Contributed by Mario Carneiro, 13-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tpsprop2d.1 | |- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
|
tpsprop2d.2 | |- ( ph -> ( TopSet ` K ) = ( TopSet ` L ) ) |
||
Assertion | tpsprop2d | |- ( ph -> ( K e. TopSp <-> L e. TopSp ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpsprop2d.1 | |- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
|
2 | tpsprop2d.2 | |- ( ph -> ( TopSet ` K ) = ( TopSet ` L ) ) |
|
3 | 1 2 | topnpropd | |- ( ph -> ( TopOpen ` K ) = ( TopOpen ` L ) ) |
4 | 1 3 | tpspropd | |- ( ph -> ( K e. TopSp <-> L e. TopSp ) ) |