Metamath Proof Explorer


Theorem tpsprop2d

Description: A topological space depends only on the base and topology components. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses tpsprop2d.1
|- ( ph -> ( Base ` K ) = ( Base ` L ) )
tpsprop2d.2
|- ( ph -> ( TopSet ` K ) = ( TopSet ` L ) )
Assertion tpsprop2d
|- ( ph -> ( K e. TopSp <-> L e. TopSp ) )

Proof

Step Hyp Ref Expression
1 tpsprop2d.1
 |-  ( ph -> ( Base ` K ) = ( Base ` L ) )
2 tpsprop2d.2
 |-  ( ph -> ( TopSet ` K ) = ( TopSet ` L ) )
3 1 2 topnpropd
 |-  ( ph -> ( TopOpen ` K ) = ( TopOpen ` L ) )
4 1 3 tpspropd
 |-  ( ph -> ( K e. TopSp <-> L e. TopSp ) )