Metamath Proof Explorer


Theorem tpsprop2d

Description: A topological space depends only on the base and topology components. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses tpsprop2d.1 ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) )
tpsprop2d.2 ( 𝜑 → ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐿 ) )
Assertion tpsprop2d ( 𝜑 → ( 𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp ) )

Proof

Step Hyp Ref Expression
1 tpsprop2d.1 ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) )
2 tpsprop2d.2 ( 𝜑 → ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐿 ) )
3 1 2 topnpropd ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) )
4 1 3 tpspropd ( 𝜑 → ( 𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp ) )