Description: A topological space depends only on the base and topology components. (Contributed by Mario Carneiro, 13-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tpsprop2d.1 | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) | |
tpsprop2d.2 | ⊢ ( 𝜑 → ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐿 ) ) | ||
Assertion | tpsprop2d | ⊢ ( 𝜑 → ( 𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpsprop2d.1 | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) | |
2 | tpsprop2d.2 | ⊢ ( 𝜑 → ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐿 ) ) | |
3 | 1 2 | topnpropd | ⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) |
4 | 1 3 | tpspropd | ⊢ ( 𝜑 → ( 𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp ) ) |